Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T05:45:42.270Z Has data issue: false hasContentIssue false

Hybrid Detectors Improved Time-Lapse Confocal Microscopy of PML and 53BP1 Nuclear Body Colocalization in DNA Lesions

Published online by Cambridge University Press:  15 February 2013

Veronika Foltánková
Affiliation:
Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-612 65, Brno, Czech Republic
Pavel Matula
Affiliation:
Faculty of Informatics, Masaryk University, Brno, Botanická 68a, 602 00, Brno, Czech Republic
Dmitry Sorokin
Affiliation:
Faculty of Informatics, Masaryk University, Brno, Botanická 68a, 602 00, Brno, Czech Republic
Stanislav Kozubek
Affiliation:
Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-612 65, Brno, Czech Republic
Eva Bártová*
Affiliation:
Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-612 65, Brno, Czech Republic
*
*Corresponding author. E-mail: bartova@ibp.cz
Get access

Abstract

We used hybrid detectors (HyDs) to monitor the trajectories and interactions of promyelocytic leukemia (GFP-PML) nuclear bodies (NBs) and mCherry-53BP1-positive DNA lesions. 53BP1 protein accumulates in NBs that occur spontaneously in the genome or in γ-irradiation-induced foci. When we induced local DNA damage by ultraviolet irradiation, we also observed accumulation of 53BP1 proteins into discrete bodies, instead of the expected dispersed pattern. In comparison with photomultiplier tubes, which are used for standard analysis by confocal laser scanning microscopy, HyDs significantly eliminated photobleaching of GFP and mCherry fluorochromes during image acquisition. The low laser intensities used for HyD-based confocal analysis enabled us to observe NBs for the longer time periods, necessary for studies of the trajectories and interactions of PML and 53BP1 NBs. To further characterize protein interactions, we used resonance scanning and a novel bioinformatics approach to register and analyze the movements of individual PML and 53BP1 NBs. The combination of improved HyD-based confocal microscopy with a tailored bioinformatics approach enabled us to reveal damage-specific properties of PML and 53BP1 NBs.

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreassen, P.R., Ho, G.P. & D'Andrea, A.D. (2006). DNA damage responses and their many interactions with the replication fork. Carcinogenesis 27(5), 883892.Google Scholar
Ayoub, N., Jeyasekharan, A.D., Bernal, J.A. & Venkitaraman, A.R. (2008). HP1-beta mobilization promotes chromatin changes that initiate the DNA damage response. Nature 453(7195), 682686.CrossRefGoogle ScholarPubMed
Baldeyron, C., Soria, G., Roche, D., Cook, A.J. & Almouzni, G. (2011). HP1alpha recruitment to DNA damage by p150CAF-1 promotes homologous recombination repair. J Cell Biol 193(1), 8195.CrossRefGoogle ScholarPubMed
Bártová, E., Šustáčková, G., Stixová, L., Kozubek, S., Legartová, S. & Foltánková, V. (2011). Recruitment of Oct4 protein to UV-damaged chromatin in embryonic stem cells. PLoS One 6(12), e27281. CrossRefGoogle ScholarPubMed
Bischof, O., Kim, S.H., Irving, J., Beresten, S., Ellis, N.A. & Campisi, J. (2001). Regulation and localization of the Bloom syndrome protein in response to DNA damage. J Cell Biol 153(2), 367380.CrossRefGoogle ScholarPubMed
Boe, S.O., Haave, M., Jul-Larsen, A., Grudic, A., Bjerkvig, R. & Lonning, P.E. (2006). Promyelocytic leukemia nuclear bodies are predetermined processing sites for damaged DNA. J Cell Sci 119(Pt 16), 32843295.CrossRefGoogle ScholarPubMed
Boisvert, F.M., Hendzel, M.J. & Bazett-Jones, D.P. (2000). Promyelocytic leukemia (PML) nuclear bodies are protein structures that do not accumulate RNA. J Cell Biol 148(2), 283292.Google Scholar
Bunting, S.F., Callen, E., Wong, N., Chen, H.T., Polato, F., Gunn, A., Bothmer, A., Feldhahn, N., Fernandez-Capetillo, O., Cao, L., Xu, X., Deng, C.X., Finkel, T., Nussenzweig, M., Stark, J.M. & Nussenzweig, A. (2010). 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 141(2), 243254.CrossRefGoogle ScholarPubMed
Carbone, R., Pearson, M., Minucci, S. & Pelicci, P.G. (2002). PML NBs associate with the hMre11 complex and p53 at sites of irradiation induced DNA damage. Oncogene 21(11), 16331640.Google Scholar
Ching, R.W., Dellaire, G., Eskiw, C.H. & Bazett-Jones, D.P. (2005). PML bodies: A meeting place for genomic loci? J Cell Sci 118(Pt 5), 847854.CrossRefGoogle ScholarPubMed
Cremer, C. (2012). Optics far beyond the diffraction limit. In Springer Handbook of Lasers and Optics, Träger, F. (Ed.), pp. 13591397. Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
Cremer, T. & Cremer, M. (2010). Chromosome territories. Cold Spring Harb Perspect Biol 2(3), a003889. CrossRefGoogle ScholarPubMed
Dellaire, G. & Bazett-Jones, D.P. (2004). PML nuclear bodies: Dynamic sensors of DNA damage and cellular stress. Bioessays 26(9), 963977.CrossRefGoogle ScholarPubMed
De Vylder, J., De Vos, W.H., Manders, E.M. & Philips, W. (2011). 2D mapping of strongly deformable cell nuclei-based on contour matching. Cytometry A 79(7), 580588.Google Scholar
Dimitrova, N., Chen, Y.C., Spector, D.L. & de Lange, T. (2008). 53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility. Nature 456(7221), 524528.CrossRefGoogle ScholarPubMed
Dundr, M. (2012). Nuclear bodies: Multifunctional companions of the genome. Curr Opin Cell Biol 24(3), 415422.Google Scholar
Eskiw, C.H., Dellaire, G. & Bazett-Jones, D.P. (2004). Chromatin contributes to structural integrity of promyelocytic leukemia bodies through a SUMO-1-independent mechanism. J Biol Chem 279(10), 95779585.CrossRefGoogle ScholarPubMed
Gresko, E., Ritterhoff, S., Sevilla-Perez, J., Roscic, A., Frobius, K., Kotevic, I., Vichalkovski, A., Hess, D., Hemmings, B.A. & Schmitz, M.L. (2009). PML tumor suppressor is regulated by HIPK2-mediated phosphorylation in response to DNA damage. Oncogene 28(5), 698708.Google Scholar
Harrigan, J.A., Belotserkovskaya, R., Coates, J., Dimitrova, D.S., Polo, S.E., Bradshaw, C.R., Fraser, P. & Jackson, S.P. (2011). Replication stress induces 53BP1-containing OPT domains in G1 cells. J Cell Biol 193(1), 97108.CrossRefGoogle ScholarPubMed
Jackson, S.P. & Bartek, J. (2009). The DNA-damage response in human biology and disease. Nature 461(7267), 10711078.Google Scholar
Krejčí, J., Harničárová, A., Kurová, J., Uhlířová, R., Kozubek, S., Legartová, S., Hájek, R. & Bartova, E. (2008). Nuclear organization of PML bodies in leukaemic and multiple myeloma cells. Leuk Res 32(12), 18661877.Google Scholar
Kruhlak, M.J., Celeste, A., Dellaire, G., Fernandez-Capetillo, O., Muller, W.G., McNally, J.G., Bazett-Jones, D.P. & Nussenzweig, A. (2006). Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks. J Cell Biol 172(6), 823834.Google Scholar
Lallemand-Breitenbach, V. & de The, H. (2010). PML nuclear bodies. Cold Spring Harb Perspect Biol 2(5), a000661. CrossRefGoogle ScholarPubMed
Luijsterburg, M.S., Dinant, C., Lans, H., Stap, J., Wiernasz, E., Lagerwerf, S., Warmerdam, D.O., Lindh, M., Brink, M.C., Dobrucki, J.W., Aten, J.A., Fousteri, M.I., Jansen, G., Dantuma, N.P., Vermeulen, W., Mullenders, L.H., Houtsmuller, A.B., Verschure, P.J. & van Driel, R. (2009). Heterochromatin protein 1 is recruited to various types of DNA damage. J Cell Biol 185(4), 577586.CrossRefGoogle ScholarPubMed
Lukas, J. & Bartek, J. (2009). DNA repair: New tales of an old tail. Nature 458(7238), 581583.Google Scholar
Manis, J.P., Morales, J.C., Xia, Z., Kutok, J.L., Alt, F.W. & Carpenter, P.B. (2004). 53BP1 links DNA damage-response pathways to immunoglobulin heavy chain class-switch recombination. Nat Immunol 5(5), 481487.Google Scholar
Matula, P., Kozubek, M. & Dvořák, V. (2006). Fast point-based 3-D alignment of live cells. IEEE Trans Image Process 15(8), 23882396.CrossRefGoogle ScholarPubMed
Maul, G.G., Negorev, D., Bell, P. & Ishov, A.M. (2000). Review: Properties and assembly mechanisms of ND10, PML bodies, or PODs. J Struct Biol 129(2-3), 278287.Google Scholar
Muratani, M., Gerlich, D., Janicki, S.M., Gebhard, M., Eils, R. & Spector, D.L. (2002). Metabolic-energy-dependent movement of PML bodies within the mammalian cell nucleus. Nat Cell Biol 4(2), 106110.CrossRefGoogle ScholarPubMed
Nagy, Z. & Soutoglou, E. (2009). DNA repair: Easy to visualize, difficult to elucidate. Trends Cell Biol 19(11), 617629.CrossRefGoogle ScholarPubMed
Polo, S.E. & Jackson, S.P. (2011). Dynamics of DNA damage response proteins at DNA breaks: A focus on protein modifications. Genes Dev 25(5), 409433.Google Scholar
Reina-San-Martin, B., Chen, J., Nussenzweig, A. & Nussenzweig, M.C. (2007). Enhanced intra-switch region recombination during immunoglobulin class switch recombination in 53BP1-/- B cells. Eur J Immunol 37(1), 235239.Google Scholar
Rogakou, E.P., Pilch, D.R., Orr, A.H., Ivanova, V.S. & Bonner, W.M. (1998). DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273(10), 58585868.CrossRefGoogle ScholarPubMed
Scaglioni, P.P., Yung, T.M., Cai, L.F., Erdjument-Bromage, H., Kaufman, A.J., Singh, B., Teruya-Feldstein, J., Tempst, P. & Pandolfi, P.P. (2006). A CK2-dependent mechanism for degradation of the PML tumor suppressor. Cell 126(2), 269283.Google Scholar
Sonoda, E., Sasaki, M.S., Buerstedde, J.M., Bezzubova, O., Shinohara, A., Ogawa, H., Takata, M., Yamaguchi-Iwai, Y. & Takeda, S. (1998). Rad51-deficient vertebrate cells accumulate chromosomal breaks prior to cell death. EMBO J 17(2), 598608.CrossRefGoogle ScholarPubMed
Soria, G., Polo, S.E. & Almouzni, G. (2012). Prime, repair, restore: The active role of chromatin in the DNA damage response. Mol Cell 46(6), 722734.Google Scholar
Spector, D.L. & Lamond, A.I. (2011). Nuclear speckles. Cold Spring Harb Perspect Biol 3(2), a000646. Google Scholar
Stixová, L., Bártová, E., Matula, P., Danek, O., Legartová, S. & Kozubek, S. (2011). Heterogeneity in the kinetics of nuclear proteins and trajectories of substructures associated with heterochromatin. Epigenetics Chromatin 4, 5.Google Scholar
Stixová, L., Matula, P., Kozubek, S., Gombitová, A., Cmarko, D., Raška, I. & Bártová, E. (2012). Trajectories and nuclear arrangement of PML bodies are influenced by A-type lamin deficiency. Biol Cell 104(7), 418432.CrossRefGoogle ScholarPubMed
Šustáčková, G., Kozubek, S., Stixová, L., Legartová, S., Matula, P., Orlova, D. & Bártová, E. (2012). Acetylation-dependent nuclear arrangement and recruitment of BMI1 protein to UV-damaged chromatin. J Cell Physiol 227(5), 18381850.CrossRefGoogle ScholarPubMed
Tsukamoto, T., Hashiguchi, N., Janicki, S.M., Tumbar, T., Belmont, A.S. & Spector, D.L. (2000). Visualization of gene activity in living cells. Nat Cell Biol 2(12), 871878.Google Scholar
Wang, J., Shiels, C., Sasieni, P., Wu, P.J., Islam, S.A., Freemont, P.S. & Sheer, D. (2004). Promyelocytic leukemia nuclear bodies associate with transcriptionally active genomic regions. J Cell Biol 164(4), 515526.Google Scholar
Ward, I.M., Reina-San-Martin, B., Olaru, A., Minn, K., Tamada, K., Lau, J.S., Cascalho, M., Chen, L., Nussenzweig, A., Livak, F., Nussenzweig, M.C. & Chen, J. (2004). 53BP1 is required for class switch recombination. J Cell Biol 165(4), 459464.CrossRefGoogle ScholarPubMed
Zack, G.W., Rogers, W.E. & Latt, S.A. (1977). Automatic measurement of sister chromatid exchange frequency. J Histochem Cytochem 25(7), 741753.Google Scholar