Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-16T08:42:04.764Z Has data issue: false hasContentIssue false

Ultrastructural Imaging of Endocytic Sites in Saccharomyces cerevisiae by Transmission Electron Microscopy and Immunolabeling

Published online by Cambridge University Press:  05 March 2013

Christopher Buser
Affiliation:
Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
David G. Drubin*
Affiliation:
Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
*
*Corresponding author. E-mail: drubin@berkeley.edu
Get access

Abstract

Defining the ultrastructure of endocytic sites and localization of endocytic proteins in Saccharomyces cerevisiae by immunoelectron microscopy is central in understanding the mechanisms of membrane deformation and scission during endocytosis. We show that an improved sample preparation protocol based on high-pressure freezing, freeze substitution, and low-temperature embedding allows us to maintain the cellular fine structure and to immunolabel green fluorescent protein–tagged endocytic proteins or actin in the same sections. Using this technique we analyzed the stepwise deformation of endocytic membranes and immunolocalized the endocytic proteins Abp1p, Sla1p, Rvs167p, and actin, and were able to draw a clear ultrastructural distinction between endocytic sites and eisosomes by immunolocalizing Pil1p. In addition to defining the geometry and the fine structure of budding yeast endocytic sites, we observed associated actin filaments forming a cage-like meshwork around the endocytic membrane.

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, A.E. & Pringle, J.R. (1984). Relationship of actin and tubulin distribution to bud growth in wild-type and morphogenetic-mutant Saccharomyces cerevisiae . J Cell Biol 98, 934945.CrossRefGoogle ScholarPubMed
Boettner, D.R., Chi, R.J. & Lemmon, S.K. (2012). Lessons from yeast for clathrin-mediated endocytosis. Nat Cell Biol 14, 210.Google Scholar
Boucrot, E., Saffarian, S., Massol, R., Kirchhausen, T. & Ehrlich, M. (2006). Role of lipids and actin in the formation of clathrin-coated pits. Exp Cell Res 312, 40364048.Google Scholar
Boulant, S., Kural, C., Zeeh, J.C., Ubelmann, F. & Kirchhausen, T. (2011). Actin dynamics counteract membrane tension during clathrin-mediated endocytosis. Nat Cell Biol 13, 11241131.Google Scholar
Buser, C. & McDonald, K. (2010). Correlative GFP-immunoelectron microscopy in yeast. Methods Enzymol 470, 603618.Google Scholar
Buser, C. & Walther, P. (2008). Freeze-substitution: The addition of water to polar solvents enhances the retention of structure and acts at temperatures around −60 degrees C. J Microsc 230, 268277.Google Scholar
Carlemalm, E., Garavito, R.M. & Villiger, W. (1982). Resin development for electron-microscopy and an analysis of embedding at low-temperature. J Microsc-Oxford 126, 123143.Google Scholar
Collins, A., Warrington, A., Taylor, K.A. & Svitkina, T. (2011). Structural organization of the actin cytoskeleton at sites of clathrin-mediated endocytosis. Curr Biol 21, 11671175.Google Scholar
Collins, K.M., Thorngren, N.L., Fratti, R.A. & Wickner, W.T. (2005). Sec17p and HOPS, in distinct SNARE complexes, mediate SNARE complex disruption or assembly for fusion. EMBO J 24, 17751786.Google Scholar
Collins, T.J. (2007). ImageJ for microscopy. Biotechniques 43, 2530.Google Scholar
Doherty, G.J. & McMahon, H.T. (2009). Mechanisms of endocytosis. Annu Rev Biochem 78, 857902.Google Scholar
Engqvist-Goldstein, A.E. & Drubin, D.G. (2003). Actin assembly and endocytosis: From yeast to mammals. Annu Rev Cell Dev Biol 19, 287332.Google Scholar
Fazi, B., Cope, M.J., Douangamath, A., Ferracuti, S., Schirwitz, K., Zucconi, A., Drubin, D.G., Wilmanns, M., Cesareni, G. & Castagnoli, L. (2002). Unusual binding properties of the SH3 domain of the yeast actin-binding protein Abp1: Structural and functional analysis. J Biol Chem 277, 52905298.CrossRefGoogle ScholarPubMed
Goode, B.L., Rodal, A.A., Barnes, G. & Drubin, D.G. (2001). Activation of the Arp2/3 complex by the actin filament binding protein Abp1p. J Cell Biol 153, 627634.Google Scholar
Henne, W.M., Boucrot, E., Meinecke, M., Evergren, E., Vallis, Y., Mittal, R. & McMahon, H.T. (2010). FCHo proteins are nucleators of clathrin-mediated endocytosis. Science 328, 12811284.Google Scholar
Humbel, B.M. & Mueller, M. (1985). Freeze substitution and low temperature embedding. In Science of Biological Specimen Preparation, Mueller, M., Becker, R.P., Boyde, A. & Wolosewick, J.J. (Eds.), pp. 175183. Chicago, IL: SEM Inc., AMF O'Hare.Google Scholar
Idrissi, F.Z., Blasco, A., Espinal, A. & Geli, M.I. (2012). Ultrastructural dynamics of proteins involved in endocytic budding. Proc Natl Acad Sci USA 109(39), E2589–2594.Google Scholar
Idrissi, F.Z., Grotsch, H., Fernandez-Golbano, I.M., Presciatto-Baschong, C., Riezman, H. & Geli, M.I. (2008). Distinct acto/myosin-I structures associate with endocytic profiles at the plasma membrane. J Cell Biol 180, 12191232.Google Scholar
Kaksonen, M., Sun, Y. & Drubin, D.G. (2003). A pathway for association of receptors, adaptors, and actin during endocytic internalization. Cell 115, 475487.Google Scholar
Kaksonen, M., Toret, C.P. & Drubin, D.G. (2005). A modular design for the clathrin- and actin-mediated endocytosis machinery. Cell 123, 305320.Google Scholar
Kaksonen, M., Toret, C.P. & Drubin, D.G. (2006). Harnessing actin dynamics for clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 7, 404414.CrossRefGoogle ScholarPubMed
Kilmartin, J.V. & Adams, A.E. (1984). Structural rearrangements of tubulin and actin during the cell cycle of the yeast Saccharomyces. J Cell Biol 98, 922933.Google Scholar
Kim, K., Galletta, B.J., Schmidt, K.O., Chang, F.S., Blumer, K.J. & Cooper, J.A. (2006). Actin-based motility during endocytosis in budding yeast. Mol Biol Cell 17, 13541363.Google Scholar
Kishimoto, T., Sun, Y., Buser, C., Liu, J., Michelot, A. & Drubin, D.G. (2011). Determinants of endocytic membrane geometry, stability, and scission. Proc Natl Acad Sci USA 108, E979–988.Google Scholar
Koestler, S.A., Auinger, S., Vinzenz, M., Rottner, K. & Small, J.V. (2008). Differentially oriented populations of actin filaments generated in lamellipodia collaborate in pushing and pausing at the cell front. Nat Cell Biol 10, 306313.Google Scholar
Kremer, J.R., Mastronarde, D.N. & McIntosh, J.R. (1996). Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116, 7176.Google Scholar
Kukulski, W., Schorb, M., Kaksonen, M. & Briggs, J.A. (2012). Plasma membrane reshaping during endocytosis is revealed by time-resolved electron tomography. Cell 150, 508520.Google Scholar
Kukulski, W., Schorb, M., Welsch, S., Picco, A., Kaksonen, M. & Briggs, J.A. (2011). Correlated fluorescence and 3D electron microscopy with high sensitivity and spatial precision. J Cell Biol 192, 111119.Google Scholar
Liu, J., Kaksonen, M., Drubin, D.G. & Oster, G. (2006). Endocytic vesicle scission by lipid phase boundary forces. Proc Natl Acad Sci USA 103, 1027710282.Google Scholar
Liu, J., Sun, Y., Drubin, D.G. & Oster, G.F. (2009). The mechanochemistry of endocytosis. PLoS Biol 7, e1000204. Google Scholar
Mastronarde, D.N. (1997). Dual-axis tomography: An approach with alignment methods that preserve resolution. J Struct Biol 120, 343352.Google Scholar
Mastronarde, D.N. (2005). Automated electron microscope tomography using robust prediction of specimen movements. J Struct Biol 152, 3651.Google Scholar
McMahon, H.T. & Boucrot, E. (2011). Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 12, 517533.Google Scholar
Mercogliano, C.P. & DeRosier, D.J. (2007). Concatenated metallothionein as a clonable gold label for electron microscopy. J Struct Biol 160, 7082.Google Scholar
Merrifield, C.J., Feldman, M.E., Wan, L. & Almers, W. (2002). Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nat Cell Biol 4, 691698.Google Scholar
Moreira, K.E., Walther, T.C., Aguilar, P.S. & Walter, P. (2009). Pil1 controls eisosome biogenesis. Mol Biol Cell 20, 809818.Google Scholar
Mulholland, J., Preuss, D., Moon, A., Wong, A., Drubin, D. & Botstein, D. (1994). Ultrastructure of the yeast actin cytoskeleton and its association with the plasma membrane. J Cell Biol 125, 381391.Google Scholar
Murk, J.L., Posthuma, G., Koster, A.J., Geuze, H.J., Verkleij, A.J., Kleijmeer, M.J. & Humbel, B.M. (2003). Influence of aldehyde fixation on the morphology of endosomes and lysosomes: Quantitative analysis and electron tomography. J Microsc 212, 8190.Google Scholar
Newpher, T.M., Smith, R.P., Lemmon, V. & Lemmon, S.K. (2005). In vivo dynamics of clathrin and its adaptor-dependent recruitment to the actin-based endocytic machinery in yeast. Dev Cell 9, 8798.Google Scholar
Nixon, S.J., Webb, R.I., Floetenmeyer, M., Schieber, N., Lo, H.P. & Parton, R.G. (2009). A single method for cryofixation and correlative light, electron microscopy and tomography of zebrafish embryos. Traffic 10, 131136.Google Scholar
Seedorf, M., Damelin, M., Kahana, J., Taura, T. & Silver, P.A. (1999). Interactions between a nuclear transporter and a subset of nuclear pore complex proteins depend on Ran GTPase. Mol Cell Biol 19, 15471557.Google Scholar
Sims, P.A. & Hardin, J.D. (2007). Fluorescence-integrated transmission electron microscopy images: Integrating fluorescence microscopy with transmission electron microscopy. Methods Mol Biol 369, 291308.CrossRefGoogle ScholarPubMed
Smaczynska-de Rooij, I., Allwood, E.G., Aghamohammadzadeh, S., Hettema, E.H., Goldberg, M.W. & Ayscough, K.R. (2010). A role for the dynamin-like protein Vps1 during endocytosis in yeast. J Cell Sci 123, 34963506.Google Scholar
Smythe, E. & Ayscough, K.R. (2006). Actin regulation in endocytosis. J Cell Sci 119, 45894598.Google Scholar
Stefan, C.J., Padilla, S.M., Audhya, A. & Emr, S.D. (2005). The phosphoinositide phosphatase Sjl2 is recruited to cortical actin patches in the control of vesicle formation and fission during endocytosis. Mol Cell Biol 25, 29102923.Google Scholar
Stradalova, V., Blazikova, M., Grossmann, G., Opekarova, M., Tanner, W. & Malinsky, J. (2012). Distribution of cortical endoplasmic reticulum determines positioning of endocytic events in yeast plasma membrane. PLoS One 7, e35132. Google Scholar
Stradalova, V., Stahlschmidt, W., Grossmann, G., Blazikova, M., Rachel, R., Tanner, W. & Malinsky, J. (2009). Furrow-like invaginations of the yeast plasma membrane correspond to membrane compartment of Can1. J Cell Sci 122, 28872894.Google Scholar
Sun, Y., Martin, A.C. & Drubin, D.G. (2006). Endocytic internalization in budding yeast requires coordinated actin nucleation and myosin motor activity. Dev Cell 11, 3346.CrossRefGoogle ScholarPubMed
Svitkina, T.M. & Borisy, G.G. (1999). Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J Cell Biol 145, 10091026.Google Scholar
Takeo, K., Shigeta, M. & Takagi, Y. (1976). Plasma membrane ultrastructural differences between the exponential and stationary phases of Saccharomyces cerevisiae as revealed by freeze-etching. J Gen Microbiol 97, 323329.Google Scholar
Tokuyasu, K.T. (1973). A technique for ultracryotomy of cell suspensions and tissues. J Cell Biol 57, 551565.Google Scholar
Toret, C.P., Lee, L., Sekiya-Kawasaki, M. & Drubin, D.G. (2008). Multiple pathways regulate endocytic coat disassembly in Saccharomyces cerevisiae for optimal downstream trafficking. Traffic 9, 848859.Google Scholar
Walther, P. (2008). High-resolution cryo-SEM allows direct identification of F-actin at the inner nuclear membrane of Xenopus oocytes by virtue of its structural features. J Microsc 232, 379385.Google Scholar
Walther, P., Muller, M. & Schweingruber, M.E. (1984). The ultrastructure of the cell-surface and plasma-membrane of exponential and stationary phase cells of Schizosaccharomyces-Pombe, grown in different media. Arch Microbiol 137, 128134.CrossRefGoogle Scholar
Walther, P. & Ziegler, A. (2002). Freeze substitution of high-pressure frozen samples: The visibility of biological membranes is improved when the substitution medium contains water. J Microsc 208, 310.Google Scholar
Walther, T.C., Brickner, J.H., Aguilar, P.S., Bernales, S., Pantoja, C. & Walter, P. (2006). Eisosomes mark static sites of endocytosis. Nature 439, 9981003.Google Scholar
Wang, Q., Mercogliano, C.P. & Lowe, J. (2011). A ferritin-based label for cellular electron cryotomography. Structure 19, 147154.Google Scholar
Weinberg, J. & Drubin, D.G. (2012). Clathrin-mediated endocytosis in budding yeast. Trends Cell Biol 22, 113.Google Scholar
Yarar, D., Waterman-Storer, C.M. & Schmid, S.L. (2005). A dynamic actin cytoskeleton functions at multiple stages of clathrin-mediated endocytosis. Mol Biol Cell 16, 964975.Google Scholar

Buser Supplementary Material

Movie 1

Download Buser Supplementary Material(Video)
Video 5.2 MB

Buser Supplementary Material

Movie 2

Download Buser Supplementary Material(Video)
Video 7.7 MB

Buser Supplementary Material

Movie 3

Download Buser Supplementary Material(Video)
Video 3.2 MB