Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-15T16:09:54.089Z Has data issue: false hasContentIssue false

White dwarf accretion and type Ia supernovae

Published online by Cambridge University Press:  21 February 2013

Z. Han
Affiliation:
Key Laboratory for the Structure and Evolution of Celestial Objects, Yunnan Observatory, Kunming, 650011, China email: zhanwenhan@ynao.ac.cn, cxf@ynao.ac.cn
X. Chen
Affiliation:
Key Laboratory for the Structure and Evolution of Celestial Objects, Yunnan Observatory, Kunming, 650011, China email: zhanwenhan@ynao.ac.cn, cxf@ynao.ac.cn
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Type Ia supernovae (SNe Ia) are believed to be thermonuclear explosions of carbon-oxygen white dwarfs at a mass close to the Chandrasekhar limit. However, a white dwarf at birth has a significantly lower mass and needs to accrete mass to grow to the limit for the explosion. Various progenitor models have been proposed and those models play an important role in our understanding of SNe Ia and cosmology.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Chen, W. & Li, X. 2007, ApJ 658, L51CrossRefGoogle Scholar
Chen, X., Han, Z., & Tout, C. A. 2011, ApJ 735, L31CrossRefGoogle Scholar
Chen, X., Jeffery, C. S., Zhang, Z., & Han, Z. 2012, ApJ 755, L9Google Scholar
Eggleton, P. P. 1973, MNRAS, 163, 279Google Scholar
Hachisu, I., Kato, M., & Nomoto, K. 1996, ApJ, 470, L97CrossRefGoogle Scholar
Hachisu, I., Kato, M., & Nomoto, K. 1999, ApJ, 522, 487CrossRefGoogle Scholar
Han, Z. 2008, ApJ, 677, L109CrossRefGoogle Scholar
Han, Z. & Podsiadlowski, Ph. 2004, MNRAS, 350, 1301Google Scholar
Han, Z., Podsiadlowski, Ph., & Eggleton, P. P. 1994, MNRAS, 270, 121Google Scholar
Han, Z., Podsiadlowski, Ph., & Eggleton, P. P. 1995, MNRAS, 272, 800Google Scholar
Han, Z., Podsiadlowski, Ph., & Lynas-Gray, A. E. 2007, MNRAS, 380, 1098Google Scholar
Han, Z. & Webbink, R. F. 1999, A&A, 349, L17Google Scholar
Liu, Z., Pakmor, R., & Roepke, F. K.et al. 2012, arXiv1209.4458Google Scholar
Meng, X., Chen, X., & Han, Z. 2009, MNRAS, 395, 2103Google Scholar
Nomoto, K. & Iben, I. Jr. 1985, ApJ, 297, 531Google Scholar
Pakmor, R., Kromer, M., & Taubenberger, S., et al. 2012, ApJ, 747, L10CrossRefGoogle Scholar
Pan, K., Ricker, P., & Taam, R. 2012, arXiv1270.0170Google Scholar
Perlmutter, S., Aldering, G., & Goldhaber, G., et al. 1999, ApJ, 517, 565.Google Scholar
Riess, A., Filippenko, A. V., & Challis, P., et al. 1998, AJ, 116, 1009Google Scholar
Ruiz-Lapuente, P., Comeron, F., & Mendez, J.et al. 2004, Nature, 431, 1069Google Scholar
Toonen, S., Nelemans, G. & Portegies Zwart, S. 2012, A&A, 546, 70Google Scholar
Wang, B. & Han, Z. 2012, New Astron. Revs, 56, 122Google Scholar
Wang, B., Li, X., & Han, Z. 2010, MNRAS, 401, 2729Google Scholar
Wang, B., Meng, X., Chen, X., & Han, Z. 2009, MNRAS, 395, 847Google Scholar
Xu, X. & Li, X. 2009, A&A, 495, 243Google Scholar