Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-29T14:40:02.539Z Has data issue: false hasContentIssue false

Formation of millisecond pulsars - NS initial mass and EOS constraints

Published online by Cambridge University Press:  21 February 2013

Michał Bejger
Affiliation:
N. Copernicus Astronomical Center PAS, Bartycka 18, PL-00-716 Warsaw, Poland email: bejger@camk.edu.pl, haensel@camk.edu.pl, jlz@camk.edu.pl
Morgane Fortin
Affiliation:
N. Copernicus Astronomical Center PAS, Bartycka 18, PL-00-716 Warsaw, Poland email: bejger@camk.edu.pl, haensel@camk.edu.pl, jlz@camk.edu.pl LUTH, UMR 8102 du CNRS, Observatoire de Paris, F-92195 Meudon Cedex, France email: morgane.fortin@obspm.fr
Paweł Haensel
Affiliation:
N. Copernicus Astronomical Center PAS, Bartycka 18, PL-00-716 Warsaw, Poland email: bejger@camk.edu.pl, haensel@camk.edu.pl, jlz@camk.edu.pl
J. Leszek Zdunik
Affiliation:
N. Copernicus Astronomical Center PAS, Bartycka 18, PL-00-716 Warsaw, Poland email: bejger@camk.edu.pl, haensel@camk.edu.pl, jlz@camk.edu.pl
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent measurement of a high millisecond pulsar mass (PSR J1614-2230, 1.97± 0.04 M) compared with the low mass of PSR J0751+1807 (1.26± 0.14 M) indicates a large span of masses of recycled pulsars and suggests a broad range of neutron stars masses at birth. We aim at reconstructing the pre-accretion masses for these pulsars while taking into account interaction of the magnetic field with a thin accretion disk, magnetic field decay and relativistic 2D solutions for stellar configurations for a set of equations of state. We briefly discuss the evolutionary scenarios leading to the formation of these neutron stars and study the influence of the equation of state.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Akmal, A., Pandharipande, V. R., & Ravenhall, D. G. 1998, Phys. Rev. C, 58, 1804Google Scholar
Bednarek, I., et al. 2011, A&A, 543, A157Google Scholar
Bejger, M., Zdunik, J. L., & Haensel, P. 2010, A&A, 520, A16Google Scholar
Bejger, M., Fortin, M., Haensel, P., & Zdunik, J. L. 2011, A&A, 536, A87Google Scholar
Bejger, M., Haensel, P., Zdunik, J. L., & Fortin, M. 2011, A&A, 536, A92Google Scholar
Demorest, P. B., et al. 2010, Nature, 467, 1081Google Scholar
De Loore, C. W. H. & Doom, C., 1992, Astrophysics and Space Science Library, 179Google Scholar
Douchin, F. & Haensel, P. 2001, A&A, 380, 151Google Scholar
Kluźniak, W. & Rappaport, S. 2007, ApJ, 671, 1990Google Scholar
Nice, D. J., Stairs, I. H., & Kasian, L. E. 2008, 40 Years of Pulsars: Millisecond Pulsars, Magnetars and More, 983, 453Google Scholar
Shibazaki, N., Murakami, T., Shaham, J., & Nomoto, K. 1989, Nature, 342, 656Google Scholar
Taam, R. E. & van den Heuvel, E. P. J., 1986, ApJ, 305, 235Google Scholar
Tauris, T. M. & van den Heuvel, E. P. J. 2006, Compact stellar X-ray sources, Cambridge Astrophysics Series, No. 39, 623Google Scholar
Tauris, T. M., Langer, N., & Kramer, M. 2011, MNRAS, 416, 2130Google Scholar
Zhang, C. M. & Kojima, Y. 2006, MNRAS, 366, 137CrossRefGoogle Scholar
Zhang, C. M., Wang, J., Zhao, Y. H., et al. 2011, A&A, 527, A83Google Scholar