Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-24T15:46:20.746Z Has data issue: false hasContentIssue false

Relative host body condition and food availability influence epidemic dynamics: a Poecilia reticulata-Gyrodactylus turnbulli host-parasite model

Published online by Cambridge University Press:  05 November 2012

CHRISTINA P. TADIRI*
Affiliation:
McGill School of Environment, 3534 rue University, Montréal, QC H3A 2A7, Canada
FELIPE DARGENT
Affiliation:
Department of Biology, McGill University, 1205 avenue Docteur Penfield Montréal QC H3A 1B1, Canada
MARILYN E. SCOTT
Affiliation:
McGill School of Environment, 3534 rue University, Montréal, QC H3A 2A7, Canada Institute of Parasitology, McGill University, 21,111 Lakeshore Road, Ste-Anne de Bellevue, QC H9X 3V9, Canada
*
*Corresponding author: McGill University Stewart Biology Building, 1205 Avenue Docteur Penfield, Room W3/2, Montréal QC H3A 1B1, Canada. Tel: +514 398 3156. Fax: +514 398 5069. E-mail: christina.tadiri@mail.mcgill.ca

Summary

Understanding disease transmission is important to species management and human health. Host body condition, nutrition and disease susceptibility interact in a complex manner, and while the individual effects of these variables are well known, our understanding of how they interact and translate to population dynamics is limited. Our objective was to determine whether host relative body condition influences epidemic dynamics, and how this relationship is affected by food availability. Poecilia reticulata (guppies) of roughly similar size were selected and assembled randomly into populations of 10 guppies assigned to 3 different food availability treatments, and the relative condition index (Kn) of each fish was calculated. We infected 1 individual per group (‘source’ fish) with Gyrodactyus turnbulli and counted parasites on each fish every other day for 10 days. Epidemic parameters for each population were analysed using generalized linear models. High host Kn—particularly that of the ‘source’ fish—exerted a positive effect on incidence, peak parasite burden, and the degree of parasite aggregation. Low food availability increased the strength of the associations with peak burden and aggregation. Our findings suggest that host Kn and food availability interact to influence epidemic dynamics, and that the condition of the individual that brings the parasite into the host population has a profound impact on the spread of infection.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bakke, T. A., Cable, J. and Harris, P. D. (2007). The biology of gyrodactylid monogeneans: The “russian-doll killers”. In Advances in Parasitology, Vol. 64 (ed. Baker, J. R. and Rollinson, D.), pp. 161376, 459460. Academic Press, Elsevier B. V., Amsterdam, The Netherlands.Google Scholar
Beldomenico, P. M., Telfer, S., Gebert, S., Lukomski, L., Bennett, M. and Begon, M. (2008). Poor condition and infection: a vicious circle in natural populations. Proceedings of the Royal Society of London, B 275, 17531759. doi: 10.1098/rspb.2008.0147.Google ScholarPubMed
Brzek, P. and Konarzewski, M. (2007). Relationship between avian growth rate and immune response depends on food availability. Journal of Experimental Biology 210, 23612367. doi: 10.1242/jeb.003517.CrossRefGoogle ScholarPubMed
Cable, J., Scott, E. C. G., Tinsley, R. C. and Harris, P. D. (2002). Behavior favoring transmission in the viviparous monogenean Gyrodactylus turnbulli. Journal of Parasitology 88, 183184. doi: 10.1645/0022-3395(2002)088[0183:bftitv]2.0.co;2.CrossRefGoogle ScholarPubMed
Cable, J. and van Oosterhout, C. (2007). The impact of parasites on the life history evolution of guppies (Poecilia reticulata): The effects of host size on parasite virulence. International Journal for Parasitology 37, 14491458. doi: 10.1016/j.ijpara.2007.04.013.CrossRefGoogle ScholarPubMed
Croft, D. P., Albanese, B., Arrowsmith, B. J., Botham, M., Webster, M. and Krause, J. (2003). Sex-biased movement in the guppy (Poecilia reticulata). Oecologia 137, 6268. doi: 10.1007/s00442-003-1268-6.CrossRefGoogle ScholarPubMed
Dussault, G. V. and Kramer, D. L. (1981). Food and feeding behavior of the guppy, Poecilia reticulata (Pisces: Poeciliidae). Canadian Journal of Zoology 59, 684701. doi: 10.1139/z81-098.CrossRefGoogle Scholar
Exton, M. S. (1997). Infection-induced anorexia: Active host defence strategy. Appetite 29, 369383. doi: 10.1006/appe.1997.0116.CrossRefGoogle ScholarPubMed
Fraser, B. and Neff, B. (2010). Parasite mediated homogenizing selection at the MHC in guppies. Genetica 138, 273278. doi: 10.1007/s10709-009-9402-y.CrossRefGoogle ScholarPubMed
Fraser, B. A., Ramnarine, I. W. and Neff, B. D. (2009). Selection at the MHC class IIB locus across guppy (Poecilia reticulata) populations. Heredity 104, 155167. doi: 10.1038/hdy.2009.99.CrossRefGoogle ScholarPubMed
Gasparini, J., Roulin, A., Gill, V. A., Hatch, S. A. and Boulinier, T. (2006). In kittiwakes food availability partially explains the seasonal decline in humoral immunocompetence. Functional Ecology 20, 457463. doi: 10.1111/j.1365-2435.2006.01130.x.CrossRefGoogle Scholar
Gheorghiu, C., Cable, J., Marcogliese, D. J. and Scott, M. E. (2007). Effects of waterborne zinc on reproduction, survival and morphometrics of Gyrodactylus turnbulli (Monogenea) on guppies (Poecilia reticulata). International Journal for Parasitology 37, 375381. doi: 10.1016/j.ijpara.2006.09.004.CrossRefGoogle ScholarPubMed
Gordon, Swanne P., Reznick, David N., Kinnison, Michael T., Bryant, Michael J.Weese, Dylan J., Räsänen, K., Millar, Nathan P. and Hendry, Andrew P. (2009). Adaptive changes in life history and survival following a new guppy introduction. The American Naturalist 174, 3445. doi: 10.1086/599300.CrossRefGoogle ScholarPubMed
Harris, P. D. (1986). Species of Gyrodactylus von Nordmann, 1832 (Monogenea Gyrodactylidae) from poeciliid fishes, with a description of G. turnbulli sp. nov. from the guppy, Poecilia reticulata Peters. Journal of Natural History 20, 183191. doi: 10.1080/00222938600770151.CrossRefGoogle Scholar
Harris, P. D. and Lyles, A. M. (1992). Infections of Gyrodactylus bullatarudis and Gyrodactylus turnbulli on guppies (Poecilia reticulata) in Trinidad. The Journal of Parasitology 78, 912914.CrossRefGoogle ScholarPubMed
Hughes, S. and Kelly, P. (2006). Interactions of malnutrition and immune impairment, with specific reference to immunity against parasites. Parasite Immunology 28, 577588. doi: 10.1111/j.1365-3024.2006.00897.x.CrossRefGoogle ScholarPubMed
Ilmonen, P., Hakkarainen, H., Koivunen, V., Korpimaki, E., Mullie, A. and Shutler, D. (1999). Parental effort and blood parasitism in Tengmalm's owl: effects of natural and experimental variation in food abundance. Oikos 86, 7986. doi: 10.2307/3546571.CrossRefGoogle Scholar
Kearn, G. C. (1994). Evolutionary expansion of the Monogenea. International Journal for Parasitology 24, 12271271. doi: 10.1016/0020-7519(94)90193-7.CrossRefGoogle ScholarPubMed
Kolluru, G. R., Grether, G. F., Dunlop, E. and South, S. H. (2009). Food availability and parasite infection influence mating tactics in guppies (Poecilia reticulata). Behavioral Ecology 20, 131137. doi: 10.1093/beheco/arn124.CrossRefGoogle Scholar
Kolluru, G. R., Grether, G. F., South, S. H., Dunlop, E., Cardinali, A., Liu, L. and Carapiet, A. (2006). The effects of carotenoid and food availability on resistance to a naturally occurring parasite (Gyrodactylus turnbulli) in guppies (Poecilia reticulata). Biological Journal of the Linnean Society 89, 301309. doi: 10.1111/j.1095-8312.2006.00675.x.CrossRefGoogle Scholar
Lall, S. P. (2000). Nutrition and health of fish. In Advances in Nutrition Aqua culture V. Proceedings of the Fifth International Symposium on Nutrition and Food Technology, 19–22. November 2000, Mérida Yucatán, Mexico. ISBN 970-694-52-9.Google Scholar
Landolt, M. L. (1989). The relationship between diet and the immune response of fish. Aquaculture 79, 193206. doi: 10.1016/0044-8486(89)90461-4.CrossRefGoogle Scholar
Last, J. M. (Ed.) (2001). A Dictionary of Epidemiology, Oxford University Press, New York, NY, USA.Google Scholar
Le Cren, E. D. (1951). The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (Perca fluviatilis). Journal of Animal Ecology 20, 201219.CrossRefGoogle Scholar
Madhavi, R. and Anderson, R. M. (1985). Variability in the susceptibility of the fish host, Poecilia reticulata, to infection with Gyrodactylus bullatarudis (Monogenea). Parasitology 91, 531544. doi: 10.1017/S0031182000062776.CrossRefGoogle Scholar
Møller, A. P., Christe, P., Erritzøe, J. and Mavarez, J. (1998). Condition, disease and immune defence. Oikos 83, 301306.CrossRefGoogle Scholar
Murray, C. J. L. and Lopez, A. D. (1997). Global mortality, disability, and the contribution of risk factors: global burden of disease study. The Lancet 349, 14361442. doi: 10.1016/S0140-6736(96)07495-8.CrossRefGoogle ScholarPubMed
Peig, J. and Green, A. J. (2010). The paradigm of body condition: a critical reappraisal of current methods based on mass and length. Functional Ecology 24, 13231332. doi: 10.1111/j.1365-2435.2010.01751.x.CrossRefGoogle Scholar
Perez-Jvostov, F., Hendry, A. P., Fussmann, G. F. and Scott, M. E. (2012). Are host–parasite interactions influenced by adaptation to predators? A test with guppies and Gyrodactylus in experimental stream channels. Oecologia 170, 7788. doi: 10.1007/s00442-012-2289-9.CrossRefGoogle ScholarPubMed
Poulin, R. and Rohde, K. (1997). Comparing the richness of metazoan ectoparasite communities of marine fishes: Controlling for host phylogeny. Oecologia 110, 278283. doi: 10.1007/s004420050160.CrossRefGoogle ScholarPubMed
Pyke, G. H. (1984). Optimal foraging theory: A critical review. Annual Review of Ecology and Systematics 15, 523575.CrossRefGoogle Scholar
R Development Core Team (2011). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
Reno, P. W. (1998). Factors involved in the dissemination of disease in fish populations. Journal of Aquatic Animal Health 10, 160171. doi: 10.1577/1548-8667(1998)010 <0160:FIITDO> 2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Richards, E. L., van Oosterhout, C. and Cable, J. (2010). Sex-specific differences in shoaling affect parasite transmission in guppies. PLoS ONE 5, e13285. doi: 10.1371/journal.pone.0013285.CrossRefGoogle ScholarPubMed
Richards, G. R. and Chubb, J. C. (1998). Longer-term population dynamics of Gyrodactylus bullatarudis and G. turnbulli (Monogenea) on adult guppies Poecilia reticulata in 50-l experimental arenas. Parasitology Research 84, 753756. doi: 10.1007/s004360050481.CrossRefGoogle Scholar
Sato, A., Figueroa, F., O'Huigin, C., Reznick, D. N. and Klein, J. (1995). Identification of major histocompatibility complex genes in the guppy, Poecilia reticulata. Immunogenetics 43, 3849. doi: 10.1007/bf00186602.CrossRefGoogle Scholar
Schmid-Hempel, P. (2011). Evolutionary Parasitology : the Integrated Study of Infections, Immunology, Ecology, and Genetics, Oxford University Press, Oxford, UK and New York, USA.Google Scholar
Scott, M. E. (1982). Reproductive potential of Gyrodactylus bullatarudis (Monogenea) on guppies (Poecilia reticulata). Parasitology 85, 217236. doi: 10.1017/S0031182000055207.CrossRefGoogle Scholar
Scott, M. E. (1985 a). Dynamics of challenge infections of Gyrodactylus bullatarudis Turnbull (Monogenea) on guppies, Poecilia reticulata (Peters). Journal of Fish Diseases 8, 495503. doi: 10.1111/j.1365-27611985.tb00964.x.CrossRefGoogle Scholar
Scott, M. E. (1985 b). Experimental epidemiology of Gyrodactylus bullatarudis (Monogenea) on guppies (Poecilia reticuata): short- and long-term studies. In Ecology and Genetics of Host-Parasite Interactions (ed. Rollinson, D. and Anderson, R. M.), pp. 2138. Academic Press, New York, USA.Google Scholar
Scott, M. E. (1987). Temporal changes in aggregation: a laboratory study. Parasitology 94, 583595. doi: 10.1017/S0031182000055918.CrossRefGoogle ScholarPubMed
Scott, M. E. and Anderson, R. M. (1984). The population dynamics of Gyrodactylus bullatarudis (Monogenea) within laboratory populations of the fish host Poecilia reticulata. Parasitology 89, 159194. doi: 10.1017/S0031182000001207.CrossRefGoogle ScholarPubMed
Scott, M. E. and Nokes, D. J. (1984). Temperature-dependent reproduction and survival of Gyrodactylus bullatarudis (Monogenea) on guppies (Poecilia reticulata). Parasitology 89, 221228. doi: 10.1017/S0031182000001256.CrossRefGoogle Scholar
Smith, K. F., Acevedo-Whitehouse, K. and Pedersen, A. B. (2009). The role of infectious diseases in biological conservation. Animal Conservation 12, 112. doi: 10.1111/j.1469-1795.2008.00228.x.CrossRefGoogle Scholar
Van Oosterhout, C., Harris, P. D. and Cable, J. (2003). Marked variation in parasite resistance between two wild populations of the Trinidadian guppy, Poecilia reticulata (Pisces: Poeciliidae). Biological Journal of the Linnean Society 79, 645651. doi: 10.1046/j.1095-8312.2003.00203.x.CrossRefGoogle Scholar
Van Oosterhout, C., Mohammed, R. S., Hansen, H., Archard, G. A., McMullan, M., Weese, D. J. and Cable, J. (2007). Selection by parasites in spate conditions in wild Trinidadian guppies (Poecilia reticulata). International Journal for Parasitology 37, 805812. doi: 10.1016/j.ijpara.2006.12.016.CrossRefGoogle ScholarPubMed
Woo, P. T. (2006). Fish Diseases and Disorders, 2nd Edn.CABI Publishing, Oxfordshire, UK.Google Scholar