British Journal of Nutrition

Research Article

Routes to obesity: phenotypes, food choices and activity

John E. Blundella1 c1 and John Coolinga1

a1 BioPsychology Group, University of Leeds, Leeds, LS2 9JT, UK


Gain in body weight over a number of years could be achieved through cumulative positive energy balances. These positive balances could come about through adjustments in the various components of energy expenditure or fuel utilization, together with shifts in food selection or eating patterns leading to adjustments in macronutrient intake. This means that many combinations of intake and expenditure could lead to a positive energy balance; these combinations can be called routes to body weight gain. However, these routes are difficult to trace by studying random samples of individuals. Previous investigations have found a clear association between high fat consumption and the occurrence of obesity, and although a high fat intake is a strong behavioural risk factor for weight gain, the relationship does not constitute a biological inevitability. Some normal-weight and lean individuals appear to eat a high-fat diet. To investigate reasons for this we have studied individuals initially defined by particular clusters of dietary characteristics related to fat and carbohydrate consumption. Habitual high-fat (HF) and low-fat (LF) consumers have been termed phenotypes. Various aspects of energy expenditure (physiological and behavioural) and energy intake were measured in these individuals with contrasting profiles. HF phenotypes had high intakes of fatty foods and an overall higher energy intake than LF. However, these groups of young adult males had similar BMIs and percentage body fat. The HF had a significantly higher resting metabolic rate (RMR) and a lower RQ, together with high plasma fasting leptin levels, and a higher sleeping heart rate. In HF individuals the physical activity level was somewhat lower and they had significantly more periods of sedentary behaviour than LF subjects. Although HF individuals appear to be more vulnerable to developing obesity, both phenotypes carry particular risk factors and protective factors for weight gain. The use of phenotypes has allowed the identification of different potential routes to weight gain. Different strategies are required to prevent age-related increase in body weight in these quite different individuals.


c1 *Corresponding author: J. Blundell, fax +44 113 233 6670, email