Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-16T21:55:43.433Z Has data issue: false hasContentIssue false

Daily growth patterns of six species of young-of-the-year of Chilean intertidal fishes

Published online by Cambridge University Press:  09 August 2012

Guido Plaza*
Affiliation:
Escuela de Ciencias del Mar, Facultad de Recursos Naturales, Pontificia Universidad Católica de Valparaíso, Avenida Altamirano 1480, Casilla 1020, Valparaíso, Chile
Mauricio F. Landaeta
Affiliation:
Laboratorio de Ictioplancton (LABITI), Facultad de Ciencias del Mar y de Recursos Naturales, Universidad de Valparaíso, Avenida Borgoña 16344, Reñaca, Viña del Mar, Chile
C. Valeria Espinoza
Affiliation:
Departamento de Ecologia, Pontificia Universidad Católica de Chile, Chile
F. Patricio Ojeda
Affiliation:
Departamento de Ecologia, Pontificia Universidad Católica de Chile, Chile
*
Correspondence should be addressed to: G. Plaza, Escuela de Ciencias del Mar, Facultad de Recursos Naturales, Pontificia Universidad Católica de Valparaíso, Avenida Altamirano 1480, Casilla 1020, Valparaíso, Chile email: guido.plaza@ucv.cl

Abstract

Otolith microstructure analysis was used to reveal daily growth patterns of young-of-the year (YOY) of six species of perciform fishes, Bovichtus chilensis (Bovichtidae), Girella laevifrons and Graus nigra (Kyphosidae), Helcogrammoides chilensis (Tripterygiidae) and Hypsoblennius sordidus and Scartichthys viridis (Blenniidae). YOY collected in intertidal pools from June to December 2008 in Central Chile, ranged from 24 to 76 mm total length and from 25 to 390 days of age. In the six species, sagittal otoliths showed a slightly oval shape, symmetrical and laterally compressed and showed micro-increments distinguishable after a two-side polishing. Increment width of sagittae showed two patterns irrespective of hatch month and species: (i) a parabolic growth with wider increment widths (during the first 150 of YOY life, e.g. B. chilensis, G. nigra and G. laevifrons); and (ii) a more irregular pattern with lower increment widths during most of the seasons in H. chilensis and H. sordidus. Further results were: (i) a unique central primordium enclosed by two checks after which distinctive increments were deposited; (ii) low instantaneous growth rates estimated through the slope of the length-at-age relationship (range 0.1–0.21 mm d1); and (iii) a linear fish size–otolith size relationship.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Berríos, V. and Vargas, M. (2004) Estructura trófica de la asociación de peces intermareales de la costa rocosa del norte de Chile. Revista de Biología Tropical 52, 201212.CrossRefGoogle Scholar
Cáceres, C. and Ojeda, F.P. (2000) Patrones de forrajeo en dos especies de peces intermareales herbívoros de las costas de Chile: efecto de la abundancia y composición química del alimento. Revista Chilena de Historia Natural 73, 253260.CrossRefGoogle Scholar
Campana, S.E. and Jones, C.M. (1992) Analysis of otolith microstructure data. In Stevenson, D.K. and Campana, S.E. (eds) Otolith microstructure examination and analysis. Canadian Journal of Fisheries and Aquatic Sciences Special Publication 117, 73100.Google Scholar
Campana, S.E. and Neilson, J.D. (1985) Microstructure of fish otoliths. Canadian Journal of Fisheries and Aquatic Sciences 42, 10141032.CrossRefGoogle Scholar
Chambers, R.C. and Miller, T.J. (1995) Evaluating fish growth by means of otolith increment analysis: special properties of individual-level longitudinal data. In Secor, D.H., Dean, J.M. and Campana, S.E. (eds) Recent developments in fish otolith research. Columbia, SC: University of South Carolina Press, pp. 155175.Google Scholar
Diaz, E.P. and Muñoz, G. (2010) Diet and parasites of the insular fish Scartichthys variolatus (Blenniidae) from Robinson Crusoe Island, Chile: how different is this from two continental congeneric species? Revista de Biología Marina y Oceanografía 45, 293301.CrossRefGoogle Scholar
Gibson, R.N. (1982) Recent studies on the biology of intertidal fishes. Oceanography and Marine Biology: an Annual Review 20, 363414.Google Scholar
Gilliers, C., Le Pape, O., Desaunay, Y., Morin, J., Guerault, D. and Amara, R. (2006) Are growth and density quantitative indicators of essential fish habitat quality? An application to the common sole Solea solea nursery grounds. Estuarine, Coastal and Shelf Science 69, 96106.CrossRefGoogle Scholar
Green, J.M. (1971) High tide movements and homing behaviour of the tidepool sculpin Oligocottus maculosus . Journal of the Fisheries Research Board of Canada 28, 383389.CrossRefGoogle Scholar
Griffiths, S.P. (2003) Homing behaviour of intertidal rockpool fishes in south-eastern New South Wales, Australia. Australian Journal of Zoology 51, 387398.CrossRefGoogle Scholar
Griffiths, S.P., West, R.J., David, A.R. and Russell, K.G. (2004) Fish recolonization in temperate Australian rockpools: a quantitative experimental approach. Fishery Bulletin 102, 634647.Google Scholar
Hamer, P.A. and Jenkins, G.P. (1996) Larval supply and short-term recruitment of a temperate zone demersal fish, the King George whiting, Sillaginodes punctata Cuvier and Valenciennes, to an embayment in southeastern Australia. Journal of Experimental Marine Biology and Ecology 208, 197214.CrossRefGoogle Scholar
Hernández-Miranda, E. and Ojeda, P. (2006) Inter-annual variability in Somatic growth rates and mortality of coastal fishes off central chile: an ENSO driven process. Marine Biology 149, 925936.CrossRefGoogle Scholar
Hernández-Miranda, E., Veas, R., Espinoza, V., Thorrold, S.R. and Ojeda, F.P. (2009) The use of otoliths and larval abundance for studying the spatial ecology of the blenny Scartichthys viridis (Valenciennes, 1836) in coastal central Chile. Revista de Biología Marina y Oceanografía 44, 619633.CrossRefGoogle Scholar
Hindell, J.S. and Jenkins, G.P. (2004) Spatial and temporal variability in the assemblage structure of fishes associated with mangroves (Avicennia marina) and intertidal mudflats in temperate Australian embayments. Marine Biology 144, 385395.CrossRefGoogle Scholar
Jenkins, G.P. (1987) Age and growth of co-occurring larva of two flounder species, Rhombosolea tapirina and Ammotretis rostratus . Marine Biology 95, 157166.CrossRefGoogle Scholar
Jenkins, G.P., Wheatley, M.J. and Poore, A.G.B. (1996) Spatial variation in recruitment, growth and feeding of postsettlement King George whiting, Sillaginoides punctata, associated with seagrass beds Port Philip Bay, Australia. Canadian Journal of Fisheries and Aquatic Sciences 53, 350359.CrossRefGoogle Scholar
Joh, M., Takatsu, T., Nakaya, M., Higashitani, T. and Takahashi, T. (2005) Otolith microstructure and daily increment validation of marbled sole (Pseudopleuronectes yokohamae). Marine Biology 147, 5969.CrossRefGoogle Scholar
Kohn, Y.Y. and Clements, K.D. (2011) Pelagic larval duration and population connectivity in New Zealand triplefin fishes (Tripterygiidae). Environmental Biology of Fishes 91, 275286.CrossRefGoogle Scholar
Kristensen, G.P., Closs, P.M., Lokman, P. and Grønkjær, P. (2008) Otolith formation, microstructure and daily increment validation in juvenile perch Perca fluviatilis . Journal of Fish Biology 73, 14781483.CrossRefGoogle Scholar
La Mesa, M. and Ashford, J. (2008) Age and early life history of juvenile scotia sea icefish, Chaenocephalus aceratus, from Elephant and the South Shetland Islands. Polar Biology 31, 221228.CrossRefGoogle Scholar
La Mesa, M. and De Rossi, F. (2008) Early life history of the black anglerfish Lophius budegassa (Spinola, 1807) in the Mediterranean Sea using otolith microstructure. Fisheries Research 93, 234239.CrossRefGoogle Scholar
Maillet, G.L. and Checkey, D.M. (1990) Effects of starvation on the frequency of formation and width of growth increments in sagittae of laboratory-reared Atlantic menhaden Brevoortia tyrannus larvae. Fishery Bulletin 88, 735744.Google Scholar
Metaxas, A. and Scheibling, R.E. (1993) Community structure and organization of tidepools. Marine Ecology Progress Series 98, 187198.CrossRefGoogle Scholar
Morales-Nin, B. (2000) Review of the growth regulation processes of otolith daily increment formation. Fisheries Research 46, 5367.CrossRefGoogle Scholar
Moring, J.R. (1996) Short-term changes in tidepools following two hurricanes. Hydrobiologia 328, 155160.CrossRefGoogle Scholar
Morley, S.A., Belchier, M. and Dickson, T.M. (2005) Daily otolith increment validation in larval mackerel icefish Champsocephalus gunnari . Fisheries Research 75, 20002003.CrossRefGoogle Scholar
Muñoz, A.A. and Ojeda, F.P. (1998) Guild structure of carnivorous intertidal fishes of the Chilean coast: implications of ontogenetic dietary shifts. Oecologia 114, 563573.Google ScholarPubMed
Ojeda, F.P. and Muñoz, A.A. (1999) Feeding selectivity of the herbivorous fish Scartichthys viridis: effects on macroalgal community structure in a temperate rocky intertidal coast. Marine Ecology Progress Series 184, 219229.CrossRefGoogle Scholar
Pannella, G. (1971) Fish otoliths: daily growth layers and periodical patterns. Science 173, 11241127.CrossRefGoogle Scholar
Piñeiro, C., Rey, J., de Pontual, H. and Garcia, A. (2008) Growth of Northwest Iberian juvenile hake estimated by combining sagittal and transversal otolith microstructure analyses. Fisheries Research 93, 173178.CrossRefGoogle Scholar
Plaza, G., Honda, H., Sakaji, H. and Nashida, K. (2005) Preparing fish sagittae for examination of daily growth increments of young-of-the-year fishes: a modification of the embed method. Journal of Fish Biology 66, 592597.CrossRefGoogle Scholar
Plaza, G., Katayama, S. and Omori, M. (2002) Abundance and early life history traits of young-of-the-year Sebastes inermis in a Zostera marina bed. Fisheries Science 68, 12541264.CrossRefGoogle Scholar
Powell, A.B., Cheshire, R.T., Laban, E.H., Colvocoresses, J., O'Donnell, P. and Davidian, M. (2004) Growth, mortality, and hatchdate distributions of larval and juvenile spotted seatrout (Cynoscion nebulosus) in Florida Bay, Everglades National Park. Fishery Bulletin 102, 142155.Google Scholar
Pulgar, J.M., Ojeda, P.F. and Bozinovic, F. (2006) Intraspecific geographic and seasonal physiological variability in an intertidal fish, Girella laevifrons, along a climatic gradient. Journal of Fish Biology 68, 975981.CrossRefGoogle Scholar
Pyper, B.J. and Peterman, R.M. (1998) Comparison of methods to account for autocorrelation in correlation analyses of fish data. Canadian Journal of Fisheries and Aquatic Sciences 55, 21212140.Google Scholar
Quiñones-Velazquez, C. (1999) Age validation and growth of larval and juvenile haddock, Melanogrammus aeglefinus, and pollock, Pollachius virens, on the Scotian Shelf. Fishery Bulletin 97, 306319.Google Scholar
Radtke, R.L. and Waiwood, K.G. (1980) Otolith formation and body shrinkage due to fixation in larval cod (Gadus morhua). Canadian Technical Report of Fisheries and Aquatic Sciences 929, 10 pp.Google Scholar
Raventos, N. and Macpherson, E. (2001) Planktonic larval duration and settlement marks on the otoliths of Mediterranean littoral fishes. Marine Biology 138, 11151120.Google Scholar
Searcy, S.P., Eggleston, D.B. and Hare, J. (2007) Is growth a reliable indicator of habitat quality and essential fish habitat for a juvenile estuarine fish? Canadian Journal of Fisheries and Aquatic Sciences 64, 681691.CrossRefGoogle Scholar
Sepulveda, A. (1994) Daily growth increments in the otoliths of European smelt Osmerus eperlanus larvae. Marine Ecology Progress Series 108, 3342.CrossRefGoogle Scholar
Soliman, V.S., Yamada, H. and Yamaoka, K. (2010) Early life-history of the spiny siganid Siganus spinus (Linnaeus 1758) inferred from otolith microstructure. Journal of Applied Ichthyology 26, 540545.CrossRefGoogle Scholar
Sponaugle, S. and Cowen, R.K. (1994) Larval durations and recruitment patterns of two Caribbean gobies (Gobiidae): contrasting early life histories in demersal spawner. Marine Biology 120, 133143.CrossRefGoogle Scholar
Stunz, G.W., Minello, T. and Levin, P. (2002) Growth of newly settled red drum Sciaenops ocellatus in different estuarine habitat types. Marine Ecology Progress Series 238, 227236.CrossRefGoogle Scholar
Victor, B.C. (1982) Daily otolith increment and recruitment in two coral reef wrasses, Thalassoma bisfasciatum and Helichoeres bivittatus . Marine Biology 71, 203208.CrossRefGoogle Scholar
Wellington, G.M. and Victor, B.C. (1989) Planktonic larval duration of one hundred species of Pacific and Atlantic damselfishes (Pomacentridae). Marine Biology 101, 557567.CrossRefGoogle Scholar
Wilson, D.T. and McCormick, M.I. (1997) Spatial and temporal settlement-marks in otoliths of tropical reef fishes. Marine Ecology Progress Series 153, 259271.CrossRefGoogle Scholar
Yoshiyama, R.M., Gaylord, K.B., Philippart, M.T., Moore, T.R., Jordan, J.R., Coon, C.C., Schalk, L.L., Valpey, C.J. and Tosques, I. (1992) Homing behaviour and site fidelity in the intertidal sculpins (Pisces: Cottidae). Journal of Experimental Marine Biology and Ecology 160, 115130.CrossRefGoogle Scholar