Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-27T10:08:44.456Z Has data issue: false hasContentIssue false

The earliest rugose coral

Published online by Cambridge University Press:  30 October 2012

CHRISTIAN BAARS*
Affiliation:
Department of Geology, National Museum Wales, Cathays Park, Cardiff CF10 3NP, UK
MANSOUREH GHOBADI POUR
Affiliation:
Department of Geology, Faculty of Sciences, Golestan University, Gorgan, Iran
ROBERT C. ATWOOD
Affiliation:
Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
*
Author for correspondence: christian.baars@museumwales.ac.uk

Abstract

Rugose corals are thought to have evolved from an ancestral anthozoan during the Middle Ordovician Epoch even though there is a lack of fossil evidence for the early evolutionary history of the Rugosa. Previously documented species of early rugose corals are all assigned to the main orders Calostylina, Streptelasmatina, Cystiphyllina and Stauriina, which had all evolved by the late Sandbian. Lambelasma? sp., a new rugose coral, was recovered from the upper Darriwilian (Middle Ordovician) part of the Shirgesht Formation of Central Iran. One of the fossils, partly embedded in rock matrix, was examined using synchrotron X-ray tomography, which is here demonstrated to be a useful tool in palaeontological taxonomic studies. The new fossils form part of a mid-latitude Gondwana fauna and are the earliest record of rugose corals to date. The specimens combine features of both the Streptelasmatina and Calostylina, but are here assigned to the Lambelasmatidae (Calostylina) on the grounds of a very deep calice, the pinnate arrangement of the septa and a lack of synapticulae and tabulae.

Type
Rapid Communication
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baars, C. 2011. Dare to prepare? The value of preparing and sampling historically important museum collections. The Geological Curator 9, 237–42.CrossRefGoogle Scholar
Bassler, R. S. 1950. Faunal Lists and Descriptions of Paleozoic Corals. Geological Society of America Memoir 44. Washington: US National Museum, 315 pp.Google Scholar
Bengtson, P. 1988. Open nomenclature. Palaeontology 31, 223–7.Google Scholar
Bergmann, U., Morton, R. W., Manning, P. L., Sellers, W. I., Farrar, S., Huntley, K. G., Wogelius, R. A. & Larson, P. 2010. Archaeopteryx feathers and bone chemistry fully revealed via synchrotron imaging. Proceedings of the National Academy of Sciences of the United States of America 107, 9060–5.CrossRefGoogle ScholarPubMed
Bruton, D. L., Wright, A. J. & Hamedi, M. A. 2004. Ordovician trilobites of Iran. Palaeontographica A271, 111–49.CrossRefGoogle Scholar
Cocks, L. R. M., Fortey, R. A. & Rushton, A. W. A. 2010. Correlation for the Lower Palaeozoic. Geological Magazine 147, 171–80.CrossRefGoogle Scholar
Cocks, L. R. M. & Torsvik, T. H. 2002. Earth geography from 500 to 400 million years ago: a faunal and palaeomagnetic review. Journal of the Geological Society, London 159, 631–44.CrossRefGoogle Scholar
Cooper, G. A. 1956. Chazyan and Related Brachiopods. Smithsonian Miscellaneous Collections 127. Washington DC: Smithsonian Institution, 1245 pp.Google Scholar
Copper, P. 1986. Evolution of the earliest smooth spire-bearing atrypoids (Brachiopoda: Lissatrypidae, Ordovician–Silurian). Palaeontology 29, 827–66.Google Scholar
Ehrenberg, C. G. 1834. Beiträge zur physiologischen Kenntnis der Corallenthiere im allgemeinen, und besonders des Rothen Meeres, nebst einem Versuche zur physiologischen Systematik derselben (Contributions to the physiological knowledge of the coral animals in general and those of the Red Sea in particular, in addition to an experimental approach to their physiological systematics). Physikalisch-mathematische Abhandlungen der Königliche Akademie der Wissenschaften, pp. 225380 [in German].Google Scholar
Elias, R. J. 1983. Middle and Late Ordovician Solitary Rugose Corals of the Cincinnati Arch Region. Geological Survey Professional Paper 1066-N. Washington: United States Government Printing Office, 13 pp.Google Scholar
Elias, R. J. 1991. Environmental cycles and bioevents in the Upper Ordovician Red River-Stony Mountain solitary rugose coral province of North America. In Advances in Ordovician Geology (eds Barnes, C. R. & Williams, S. H.), pp. 205–11. Geological Society of Canada, Paper 90–9.Google Scholar
Ghobadi Pour, M. & Popov, L. E. 2009. First report on the occurrence of Neseuretinus and Ovalocephalus trilobites in the Middle Ordovician of Iran. Acta Palaeontologica Polonica 54, 125–33.CrossRefGoogle Scholar
Ghobadi Pour, M. & Turvey, S. T. 2009. Revision of some Lower to Middle Ordovician leiostegiid trilobites from Iran and China. Memoirs of the Australian Association of Palaeontologists 37, 363–80.Google Scholar
Ghobadi Pour, M., Williams, M. & Popov, L. E. 2007. A new Middle Ordovician arthropod fauna (Trilobita, Ostracoda, Bradoriida) from the Lashkarak Formation, Eastern Alborz Mountains, northern Iran. GFF 129, 245–54.CrossRefGoogle Scholar
Ghobadi Pour, M., Williams, M., Vannier, J., Meidla, T. & Popov, L. E. 2006. Ordovician ostracods from east central Iran. Acta Palaeontologica Polonica 51, 551–60.Google Scholar
Hall, J. 1847. Palaeontology of New York, Vol. 1, containing descriptions of the organic remains of the lower division of the New-York system. In Natural History of New York, Part VI. Albany: Van Benthuysen, 338 pp.Google Scholar
Hall, J. F. 1963. Fossils from the Middle Ordovician of the Independence Quadrangle, California. Journal of Paleontology 37, 1116–19.Google Scholar
Hill, D. 1981. Treatise on Invertebrate Paleontology, Part F: Coelenterata. Supplement 1, Rugosa and Tabulata, volumes 1, 2. Boulder, Colorado: Geological Society of America; Lawrence, Kansas: University of Kansas Press, 762 pp.Google Scholar
Ivanovskii, A. B. 1965 a. Stratigraficheskii i paleobiogeograficheskii obzor rugoz ordovika i silura (Stratigraphical and palaeobiogeographical review of the Ordovician and Silurian rugose corals). Moscow: Nauka, 118 pp [in Russian].Google Scholar
Ivanovskii, A. B. 1965 b. Drevneishie rugozy (The oldest rugose corals). Moscow: Nauka, 152 pp [in Russian].Google Scholar
Ivanovskii, A. B. 1969. Korally semeistv Tryplasmatidae i Cyathophylloididae (rugozy) (Corals of the families Tryplasmatidae and Cyathophylloididae (Rugosa)). Moscow: Nauka, 112 pp [in Russian].Google Scholar
Kaljo, D. 1956 a. Rod Primitophyllum Kaljo gen. nov. i Leolasma gen. nov. (Genera Primitophyllum n. gen. and Leolasma n. gen.). In Materialy po paleontologii. Novyye semestva i rody. (Materials for palaeontology. New families and genera) (eds Kiparisova, L. D., Markovskii, B. P. & Radchenko, G. P.). Trudy VSEGEI, novaya seriya 12, 35–3, pls IX–X [in Russian].Google Scholar
Kaljo, D. 1956 b. O streptelazmidnykh rugozakh Pribaltiiskogo ordovika (On streptelasmatoid Rugosa of the Baltic Upper Ordovician). Trudy Instituta Geologii Akademii Nauk Estonskoi SSR 1, 6873 [in Russian].Google Scholar
Kaljo, D. 1958. Nekotoryye novyye i maloizvestnyye rugozy Pribaltiki (Some new and little-known Baltic tetracorals). Trudy Instituta Geologii Akademii Nauk Estonskoi SSR 3, 101–24 [in Russian].Google Scholar
Kaljo, D. 2004. Diversity of Late Ordovician rugose corals in Baltoscandia: role of environmental changes and comparison with other areas. Proceedings of the Estonian Academy of Sciences Geology 53, 235–45.CrossRefGoogle Scholar
Kaljo, D. & Klaaman, E. 1973. Ordovician and Silurian corals. In Atlas of Palaeobiogeography (ed. Hallam, A.), pp. 3745. Amsterdam: Elsevier.Google Scholar
Kapp, U. S. 1974. Mode of growth of middle Chazyan (Ordovician) stromatoporoids, Vermont. Journal of Paleontology 48, 1235–40.Google Scholar
Kapp, U. S. & Stearn, C. W. 1975. Stromatoporoids of the Chazy Group (Middle Ordovician) Lake Champlain, Vermont and New York. Journal of Paleontology 49, 163–86.Google Scholar
Langenheim, R. L., Barnes, J. A., Delise, K. C., Ross, W. A. & Staunton, J. M. 1956. Middle and Upper(?) Ordovician rocks of Independence Quadrangle, California. American Association of Petroleum Geologists Bulletin 40, 2081–97.Google Scholar
Lavrusevich, A. I. 1971. Novye pozdeneordovikskiye rugozy Zeravshano-Gissarskoy gornoi oblasti (New Late Ordovician Rugosa from the Zeravshan-Gissar mountain region). Akademia Nauk SSSR, Paleontologicheskii Zhurnal 4, 37 [in Russian].Google Scholar
Lin, B.-Y. 1965. Ordovician corals from the provinces Kweichow and Szechuan and their stratigraphical significance. Acta Palaeontologica Sinica 13, 6493 [in Chinese with Russian summary].Google Scholar
Lindström, G. 1880. Coelenterata. In Fragmenta Silurica e dono Caroli Henrici Wegelin (eds Angelin, N. P. & Lindström, G.), 39 pp., 20 pls. Stockholm: Samson & Wallin.Google Scholar
Martins, R. M. S., Beckmann, F., Castanhinha, R., Mateus, O. & Pranzas, P. K. 2011. Dinosaur and crocodile fossils from the Mesozoic of Portugal: neutron tomography and synchrotron-radiation based micro-computed tomography. Materials Research Society Proceedings 1319, mrsf10-1319-ww02-03, doi: 10.1557/opl.2011.794.CrossRefGoogle Scholar
Milne-Edwards, H. & Haime, J. 1850–1855. A Monograph of the British Fossil Corals. London: Palaeontographical Society Monographs, 5 volumes.CrossRefGoogle Scholar
Nelson, S. 1981. Solitary streptelasmatids corals, Ordovician of northern Hudson Bay Lowland, Manitoba, Canada. Palaeontographica Abteilung A 172, 171.Google Scholar
Neuman, B. E. E. 1977. On the taxonomy of lower Palaeozoic solitary streptelasmatids. Memoirs de Bureau de Recherches Geologique et Minieres 89, 6977.Google Scholar
Neuman, B. E. E. 1984. Origin and early evolution of rugose corals. In Proceedings of the 4th International Symposium on Fossil Cnidaria held in Washington D.C. 1983 (eds Oliver, W. A., Sando, W. J., Coates, A. G., Macintyre, I. G., Bayer, F. M. & Sorauf, J. E.). Palaeontographica Americana 54, 119–26.Google Scholar
Neuman, B. E. E. 1997. Evaluation of rugose coral potentials as index fossils. Boletin de la Real Sociedad Espanola de Historia Natural Seccion Geologica 92, 303–9.Google Scholar
Okulitch, V. J. 1938. Some Black River corals. Proceedings and Transactions of the Royal Society of Canada, Series 3, 32, Section 4, 87111.Google Scholar
Perreau, M. & Tafforeau, P. 2011. Virtual dissection using phase-contrast X-ray synchrotron microtomography: reducing the gap between fossils and extant species. Systematic Entomology 36, 573–80.CrossRefGoogle Scholar
Pestana, H. R. 1960. Fossils from the Johnson Spring Formation, Middle Ordovician, Independence Quadrangle, California. Journal of Paleontology 34, 862–73.Google Scholar
Pitcher, M. 1964. Evolution of Chazyan (Ordovician) reefs of eastern United States and Canada. Bulletin of Canadian Petroleum Geology 12, 632–91.Google Scholar
Prantl, F. 1957. O rodu Helminthidium Lindström z ceskeho siluru (Rugosa) (On the genus Helminthidium Lindström (Rugosa) in the Czechoslovakian Silurian). Ustredniho Ustavu Geologickeho, Sbornik 23, 475–96 [in Czech].Google Scholar
Reed, F. R. C. 1906. The Lower Palaeozoic fossils of the Northern Shan States, Burma. Memoirs of the Geological Survey of India, Palaeontologia Indica, New Series 2, 1154.Google Scholar
Ross, R. J. Jr., Adler, F. J., Amsden, T. W., Bergstrom, D., Bergstrom, S. M., Carter, C., Churkin, M., Cressman, E. A., Derby, J. R., Dutro, J. T. Jr., Ethington, R. L., Finney, S. C., Fisher, D. W., Fisher, J. H., Harris, A. G., Hintze, L. F., Ketner, K. B., Kolata, D. L., Landing, E., Neuman, R. B., Sweet, W. C., Pojeta, J. Jr., Potter, A. W., Rader, E. K., Repetski, J. E., Shaver, R. H., Thompson, T. L. & Webers, G. F. 1982. The Ordovician System in the United States. Correlation chart and explanatory notes. Paris: International Union of Geological Sciences 12.Google Scholar
Ruttner, A., Nabavi, M. & Hajian, J. 1968. Geology of the Shirgesht area (Tabas area, East Iran). Reports of the Geological Survey of Iran 4, 1133.Google Scholar
Scrutton, C. T. 1979 a. Early fossil cnidarians. In The Origin of Major Invertebrate Groups (ed. House, M. R.), pp. 161207. Systematics Association Special Volume No. 12. London & New York: Academic Press.Google Scholar
Scrutton, C. T. 1979 b. The preparation of sections or peels of corals and stromatoporoids: a question of curatorial policy. Curation of Palaeontological Collections – Special Papers in Palaeontology 22, 97101.Google Scholar
Scrutton, C. T. 1997. The Palaeozoic corals, I: origins and relationships. Proceedings of the Yorkshire Geological Society 51, 177208.CrossRefGoogle Scholar
Scrutton, C. T. & Clarkson, E. N. K. 1991. A new scleractinian-like coral from the Ordovician of the Southern Uplands, Scotland. Palaeontology 34, 179–94.Google Scholar
Steele-Petrovich, H. M. 2011. Replacement name for Tetradium Dana, 1846. Journal of Paleontology 85, 802–3.CrossRefGoogle Scholar
Stumm, E. C. 1963. Ordovician streptelasmatid rugose corals from Michigan. Contributions from the Museum of Paleontology, The University of Michigan XVIII, 2331.Google Scholar
Sweet, W. C. & Bergström, S. M. 1976. Conodont biostratigraphy of the Middle and Upper Ordovician of the United States midcontinent. In The Ordovician System: Proceedings of a Palaeontological Association Symposium, Birmingham, September 1974 (ed. Bassett, M. G.), pp. 121–51. Cardiff: University of Wales Press and National Museum of Wales.Google Scholar
Sytova, V. A. 1977. On the origin of rugose corals. Memoirs de Bureau de Recherches Geologique et Minieres 89, 65–8.Google Scholar
Tafforeau, P., Boistel, R., Boller, E., Bravin, A., Brunet, M., Chaimanee, Y., Cloetens, P., Feist, M., Hoszowska, J., Jaeger, J. J., Kay, R. F., Lazzari, V., Mariva, L., Nel, A., Nemoz, C., Thibault, X., Vignaud, P. & Zabler, S. 2006. Applications of X-ray synchrotron microtomography for non-destructive 3D studies of paleontological specimens. Applied Physics A: Materials Science and Processing 83, 195202.CrossRefGoogle Scholar
Titarenko, V., Bradley, R., Martin, C., Withers, P. J. & Titarenko, S. 2010. Regularization methods for inverse problems in X-ray tomography. Developments in X-Ray Tomography VII 7804, 78040Z-1-10, doi: 10.1117/12.860260.Google Scholar
Titarenko, S., Withers, P. J. & Yagola, A. 2010. An analytical formula for ring artefact suppression in X-ray tomography. Applied Mathematics Letters 23, 1489–95.CrossRefGoogle Scholar
Vannier, J. M. C. 1986 a. Ostracodes Binodicopa de l'Ordovicien (Arenig–Caradoc) Ibero−Armoricain (Binodicope Ordovician ostracodes (Arenig-Caradoc) of Ibero-Armorica). Palaeontographica A 193, 77143 [in French].Google Scholar
Vannier, J. M. C. 1986 b. Ostracodes Palaeocopa de l'Ordovicien (Arenig–Caradoc) Ibero−Armoricain (Palaeocope Ordovician ostracodes (Arenig-Caradoc) of Ibero-Armorica). Palaeontographica A 193, 145218 [in French].Google Scholar
Vannier, J. M. C., Siveter, D. J. & Schallreuter, R. E. L. 1989. The composition and palaeogeographical significance of the Ordovician ostracode faunas of southern Britain, Baltoscandia, and Ibero−Armorica. Palaeontology 32, 163222.Google Scholar
Verrill, A. E. 1865. Classification of polyps (Extract condensed from a synopsis of the polypi of the North Pacific Exploring Expedition, under captains Ringgold and Rodgers, U.S.N.). Essex Institute Proceedings 4, 145–9.Google Scholar
Webby, B. D. 1971. The new Ordovician genus Hillophyllum and the early history of rugose corals with acanthine septa. Lethaia 4, 153–68.CrossRefGoogle Scholar
Webby, B. D. 1992. Global biogeography of Ordovician corals and stromatoporoids. In Global Perspectives on Ordovician Geology (eds Webby, B. D. & Laurie, J. R.), pp. 261–76. Rotterdam: Balkema.Google Scholar
Webby, B. D., Cooper, R. A., Bergström, S. M. & Paris, F. 2004 a. Stratigraphic framework and time slices. In The Great Ordovician Biodiversification Event (eds Webby, B. D., Paris, F., Droser, M. L. & Percival, I. G.), pp. 41–7. New York: Columbia University Press.CrossRefGoogle Scholar
Webby, B. D., Elias, R. J., Young, G. A., Neuman, B. E. E. & Kaljo, D. 2004 b. Corals. In The Great Ordovician Biodiversification Event (eds Webby, B. D., Paris, F., Droser, M. L. & Percival, I. G.), pp. 124–46. New York: Columbia University Press.CrossRefGoogle Scholar
Welby, C. W. 1961. Occurrence of Foerstephyllum in Chazyan rocks of Vermont. Journal of Paleontology 35, 391400.Google Scholar
Welby, C. W. 1962. Paleontology of the Champlain Basin in Vermont. Montpelier: Vermont Geological Survey Special Publication 1, 87 pp.Google Scholar
Weyer, D. 1973. Über den Ursprung der Calostylidae Zittel 1879 (Anthozoa Rugosa, Ordoviz-Silur) (On the origin of the Calostylidae Zittel 1879 (Anthozoa Rugosa, Ordovician-Silurian)). Freiberger Forschungsheft C 282, 2387 [in German].Google Scholar
Weyer, D. 1980. Die älteste Koralle Europas (Primitophyllum Kaljo, 1956, Mittelordoviz) (Europe's oldest coral (Primitophyllum Kaljo, 1956, Middle Ordovician)). Neue paläontologische und geologische Forschungsergebnisse Hallenser Absolventen. Wissenschaftliche Beiträge Martin-Luther-Universität Halle/Wittenberg, pp. 51–77 [in German].Google Scholar
Weyer, D. 1983. Lambelasma-Arten (Anthozoa, Rugosa) aus dem baltoskandischen Mittelordoviz (Lambelasma species (Anthozoa, Rugosa) from the Baltic Middle Ordovician). Freiberger Forschungsheft C 384, 719 [in German].Google Scholar
Weyer, D. 1984. Lambelasma narvaense, a new rugose coral from the Middle Ordovician of Estonia. Proceedings of the Estonian Academy of Sciences, Geology 33, 92–5.CrossRefGoogle Scholar
Weyer, D. 1993. Lambelasma carinatum, eine neue rugose Koralle aus dem Mittel-Ordoviz von Estland (Lambelasma carinatum, a new rugose coral from the Middle Ordovician of Estonia). Abhandlungen und Berichte für Naturkunde (Museum für Naturkunde Magdeburg) 16, 70–7 [in German].Google Scholar
Weyer, D. 1997. Lambelasma balticum n. sp. (Anthozoa, Rugosa) aus einem baltoskandischen Oberordoviz-Geschiebe (Lambelasma balticum n. sp. (Anthozoa, Rugosa) from an Upper Ordovician Baltoscandian erratic). Berliner Beiträge zur Geschiebeforschung, 4350 [in German].Google Scholar
Weyer, D. 2007. Revision des Ludwig/Kunth-Gesetzes zur Septeninsertion der Supraordo Rugosa (Anthozoa, Ordoviz-Perm) (Revision of Ludwig's/Kunth's law of septal insertion in the order Rugosa (Anthozoa, Ordovician-Permian)). Museum für Naturkunde Magdeburg, Abhandlungen und Berichte fuer Naturkunde 30, 85146 [in German].Google Scholar
Williams, M., Vannier, J. M. C. & Meidla, T. 2006. Systematic palaeontology. In Ordovician Ostracods from East Central Iran (eds Ghobadi Pour, M., Williams, M., Vannier, J. M. C., Meidla, T. & Popov, L. E.). Acta Palaeontologica Polonica 51, 551–60.Google Scholar
Zhan, R. & Jin, J. 2005. Brachiopods from the Middle Ordovician Shihtzupu Formation of Yunnan Province, China. Acta Palaeontologica Polonica 50, 365–93.Google Scholar
Zhang, T. R. 1981. Trilobita. In Palaeontological Atlas of Northwest China, Xinjiang, vol. 1, pp. 134213. Beijing, China: Geological Publishing House.Google Scholar
Zhou, Z. & Dean, W. T. 1986. Ordovician trilobites from Chedao, Gansu Province north-west China. Palaeontology 29, 743–86.Google Scholar
Zhou, Z., Yuan, W. & Zhou, Z. 2010. Evolutional trends and palaeobiogeography of the Ordovician trilobite Ovalocephalus Koroleva 1959. Proceedings of the Royal Society B 277, 257–66.Google Scholar
Zittel, K. A. 1876–1880. Handbuch der Palaeontologie I, Band 1, Abtheilung Protozoa, Coelenterata, Echinodermata und Molluscoidea (Handbook of Palaeontology I, Vol. 1, Division Protozoa, Coelenterata, Echinodermata and Molluscoidea). München: Oldenbourg, pp. 765 [in German].Google Scholar