Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T18:07:10.982Z Has data issue: false hasContentIssue false

U–Pb and Sm–Nd geochronology of the Kızıldağ (Hatay, Turkey) ophiolite: implications for the timing and duration of suprasubduction zone type oceanic crust formation in the southern Neotethys

Published online by Cambridge University Press:  23 October 2012

FATIH KARAOĞLAN*
Affiliation:
Çukurova Üniversitesi, Mühendislik-Mimarlık Fakültesi, Jeoloji Mühendisliği Bölümü, 01330 Balcalı, Adana, Turkey
OSMAN PARLAK
Affiliation:
Çukurova Üniversitesi, Mühendislik-Mimarlık Fakültesi, Jeoloji Mühendisliği Bölümü, 01330 Balcalı, Adana, Turkey
URS KLÖTZLI
Affiliation:
University of Vienna, Centre for Earth Sciences, A-1090 Vienna, Austria
MARTIN THÖNI
Affiliation:
University of Vienna, Centre for Earth Sciences, A-1090 Vienna, Austria
FRIEDRICH KOLLER
Affiliation:
University of Vienna, Centre for Earth Sciences, A-1090 Vienna, Austria
*
Author for correspondence: fkaraoglan@cukurova.edu.tr

Abstract

The Kızıldağ (Hatay) ophiolite in Turkey represents remnants of the southern Neotethyan ocean and is characterized by a complete ocean lithospheric section. It formed in a fore-arc setting above a N-dipping intraoceanic subduction zone, and represents the undeformed, more northerly part of the same thrust sheet that also forms the Baer–Bassit ophiolite to the south. The ophiolite was emplaced southwards from the southerly Neotethyan ocean in Maastrichtian time. U–Pb and Sm–Nd dates are used to constrain the crystallization age and duration of magmatic activity of the Kızıldağ ophiolite. U–Pb dating yielded ages of 91.7 ± 1.9 Ma for a plagiogranite and 91.6 ± 3.8 Ma for a cumulate gabbro. The cumulate gabbro also yielded a Sm–Nd isochron age of 95.3 ± 6.9 Ma. The measured ages suggest that the oceanic crust of the Kızıldağ ophiolite formed in a maximum time period of 6 Ma, and that the plagiogranite may have formed later than the gabbroic section. The U–Pb zircon ages from the Kızıldağ ophiolite and the cooling age of a metamorphic sole beneath the Baer–Bassit ophiolite are indistinguishable within the analytical uncertainties. This indicates the presence of young and hot oceanic lithosphere at the time of intraoceanic subduction/thrusting in the southern Neotethys. The U–Pb zircon ages from the Kızıldağ, the Troodos and the Semail ophiolites overlap within analytical uncertainties, suggesting that these ophiolites are contemporaneous and genetically and tectonically related within the same Late Cretaceous southern Neotethyan ocean.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Riyami, K. & Robertson, A. H. F. 2002. Mesozoic sedimentary and magmatic evolution of the Arabian continental margin, northern Syria: evidence from the Baer-Bassit Melange. Geological Magazine 139, 395420.Google Scholar
Al-Riyami, K., Robertson, A. H. F. & Danelian, T. 2002. Radiolarian biochronology of Mesozoic deep-water successions in NW Syria and Cyprus: implications for south-Tethyan evolution. Terra Nova 14, 271–80.Google Scholar
Al-Riyami, K., Robertson, A. H. F., Xenophontos, C., Danelian, T. & Dixon, J. E. 2002. Origin and emplacement of the Late Cretaceous Baer-Bassit ophiolite and its metamorphic sole in NW Syria. Lithos 65, 205–25.Google Scholar
Aslaner, M. 1973. İskenderun-Kırıkhan bölgesindeki ofiyolitlerin jeoloji ve petrografisi. Ankara: Maden Tetkik ve Arama Enstitüsü (MTA) Publication 150, 78 pp.Google Scholar
Atan, O. 1969. Geology of the Amanos Mountains (Egribucak-Karacaoren-Ceylanli-Dasevleri). Ankara: Maden Tetkik ve Arama Enstitüsü (MTA) Publication 139.Google Scholar
Bağci, U. & Parlak, O. 2009. Petrology of the Tekirova (Antalya) ophiolite (Southern Turkey): evidence for diverse magma generations and their tectonic implications during Neotethyan-subduction. International Journal of Earth Sciences 98, 387405.CrossRefGoogle Scholar
Bağci, U., Parlak, O. & Höck, V. 2005. Whole rock and mineral chemistry of cumulates from the Kızıldağ (Hatay) ophiolite (Turkey): clues for multiple magma generation during crustal accretion in the southern Neotethyan ocean. Mineralogical Magazine 69, 5376.CrossRefGoogle Scholar
Bağci, U., Parlak, O. & Höck, V. 2008. Geochemistry and tectonic environment of diverse magma generations forming the crustal units of the Kızıldağ (Hatay) ophiolite, Southern Turkey. Turkish Journal of Earth Sciences 17, 4371.Google Scholar
Barker, F. 1979. Trondhjemite: definition, environment and hypotheses. In Trondhjemites, Dacites and Related Rocks (ed. Barker, F.), pp. 112. Amsterdam: Elsevier.Google Scholar
Boulton, S. J. & Robertson, A. H. F. 2007. The Miocene of the Hatay area, S Turkey: transition from the Arabian passive margin to an underfilled foreland basin related to closure of the Southern Neotethys Ocean. Sedimentary Geology 198, 93124.Google Scholar
Boulton, S. J., Robertson, A. H. F. & Unlugenc, U. C. 2006. Tectonic and sedimentary evolution of the Cenozoic Hatay Graben, Southern Turkey: a two-phase model for graben formation. In Tectonic Development of the Eastern Mediterranean Region (eds Robertson, A. H. F. & Mountrakis, D.), pp. 613–34. Geological Society of London, Special Publication no. 260.Google Scholar
Chan, G. H. N., Malpas, J., Xenophontos, C. & Lo, C. H. 2007. Timing of subduction zone metamorphism during the formation and emplacement of Troodos and Baër–Bassit ophiolites: insights from 40Ar–39Ar geochronology. Geological Magazine 144, 797810.Google Scholar
Clube, T. M. & Robertson, A. H. F. 1986. The palaeorotation of the Troodos microplate, Cyprus, in the Late Mesozoic–Early Cenozoic plate tectonic framework of the Eastern Mediterranean. Surveys in Geophysics 8, 375434.CrossRefGoogle Scholar
Coleman, R. G. & Donato, M. M. 1979. Oceanic plagiogranite revisited. In Trondhjemites, Dacites and Related Rocks (ed. Barker, F.), pp. 149–68. Amsterdam: Elsevier.CrossRefGoogle Scholar
Coleman, R. G. & Peterman, Z. E. 1975. Oceanic plagiogranite. Journal of Geophysical Research 80, 1099–108.Google Scholar
Corfu, F., Hanchar, J. M., Hoskin, P. W. O. & Kinny, P. 2003. Atlas of zircon textures: Reviews in Mineralogy and Geochemistry 53, 469500.Google Scholar
Çelik, Ö. F. 2007. Metamorphic sole rocks and their mafic dykes in the eastern Tauride belt ophiolites (southern Turkey): implications for OIB type magma generation following slab break-off. Geological Magazine 144, 849–66.CrossRefGoogle Scholar
Çelik, Ö. F. 2008. Detailed geochemistry and K-Ar geochronology of the metamorphic sole rocks and their mafic dykes from the Mersin Ophiolite, Southern Turkey. Turkish Journal of Earth Sciences 17, 685–70.Google Scholar
Çelik, Ö. F. & Delaloye, M. 2003. Origin of metamorphic soles and their post kinematic mafic dyke swarms in the Antalya and Lycian ophiolites, SW Turkey. Geological Journal 38, 235–56.CrossRefGoogle Scholar
Çelik, Ö. F. & Delaloye, M. 2006. Characteristics of ophiolite-related metamorphic rocks in Beysehir ophiolitic melange (Central Taurides, Turkey), deduced from whole rock and mineral chemistry. Journal of Asian Earth Science 26, 461–76.CrossRefGoogle Scholar
Çelik, O. F., Delaloye, M. & Feraud, G. 2006. Precise 40Ar–39Ar ages from the metamorphic sole rocks of the Tauride Belt Ophiolites, southern Turkey: implications for the rapid cooling history. Geological Magazine 143, 213–27.Google Scholar
Çelik, O. F., Marzoli, A., Marschik, R., Chiaradia, M., Neubauer, F. & Öz, İ. 2011. Early–Middle Jurassic intra-oceanic subduction in the İzmir-Ankara-Erzincan Ocean, Northern Turkey. Tectonophysics 509, 120–34.Google Scholar
Çoğulu, E., Delaloye, M., Vuagnat, M. & Wagner, J. J. 1975. Some geochemical, geochronological and petrophysical data on the ophiolitic massif from Kızıl Dagh, Hatay. Compte Rendu des Séances de la Société de Physique et d'Histoire naturelle de Genève 10, 141–50.Google Scholar
Dean, W. T. & Monod, O. 1985. A new interpretation of the Ordovician stratigraphy of Bahçe area (Northern Amanos Mountains, Turkey). Geological Magazine 122, 1525.Google Scholar
Delaloye, M., de Souza, H., Wagner, J.-J. & Hedley, I. 1980. Isotopic ages on ophiolites from the eastern Mediterranean. In ‘Ophiolites’, Proceedings of the International Ophiolite Symposium, Cyprus, 1979 (ed. Panayiotou, A.), pp. 292–5. Nicosia: Cyprus Geological Survey.Google Scholar
Delaloye, M., Vuagnat, M. & Wagner, J. J. 1977. K-Ar ages from the Kızıldagh complex (Hatay, Turkey) and their interpretation. In International Symposium on the Structural History of the Mediterranean Basins, 25–29 October 1975 (eds Biju-Duval, B. & Montadert, L.), pp. 73–8.Google Scholar
Dilek, Y. & Delaloye, M. 1992. Structure of the Kızıldağ ophiolite, a slow-spread Cretaceous ridge segment north of the Arabian promontory. Geology 20, 1922.Google Scholar
Dilek, Y. & Flower, M. F. J. 2003. Arc-trench rollback and forearc accretion: 2. A model template for ophiolites in Albania, Cyprus, and Oman. In Ophiolites in Earth History (eds Dilek, Y. & Robinson, P. T.), pp. 4368. Geological Society of London, Special Publication no. 218.Google Scholar
Dilek, Y. & Furnes, H. 2009. Structure and geochemistry of Tethyan ophiolites and their petrogenesis in subduction rollback systems. Lithos 113, 120.Google Scholar
Dilek, Y. & Furnes, H. 2011. Ophiolite genesis and global tectonics: geochemical and tectonic fingerprinting of ancient oceanic lithosphere Geological Society of America Bulletin 123, 387411.Google Scholar
Dilek, Y., Furnes, H. & Shallo, M. 2007. Suprasubduction zone ophiolite formation along the periphery of Mesozoic Gondwana. Gondwana Research 11, 453–75.CrossRefGoogle Scholar
Dilek, Y., Furnes, H. & Shallo, M. 2008. Geochemistry of the Jurassic Mirdita ophiolite (Albania) and the MORB to SSZ evolution of a marginal basin oceanic crust: Lithos 100, 174209.Google Scholar
Dilek, Y. & Thy, P. 1998. Structure, petrology, and seafloor spreading tectonics of the Kizildag ophiolite (Turkey). In Modern Ocean Floor Processes and the Geological Record (eds Mills, R. & Harrison, K.), pp. 4369. Geological Society of London, Special Publication no. 148.Google Scholar
Dilek, Y. & Thy, P. 2006. Age and petrogenesis of plagiogranite intrusions in the Ankara melange, Central Turkey. Island Arc 15, 4457.Google Scholar
Dilek, Y. & Thy, P. 2009. Island arc tholeiite to boninitic melt evolution of the Cretaceous Kizildag (Turkey) ophiolite: model for multi-stage early arc-forearc magmatism in Tethyan subduction factories. Lithos 113, 6887.Google Scholar
Dilek, Y., Thy, P., Hacker, B. & Grundvig, S. 1999. Structure and petrology of Tauride ophiolites and mafic dike intrusions (Turkey): implications for the Neotethyan ocean. Geological Society of America Bulletin 111, 1192–216.Google Scholar
Dimo-Lahitte, A., Monie, P. & Vergely, P. 2001. Metamorphic soles from the Albanian ophiolites, petrology, 40Ar/39Ar geochronology, and geodynamic evolution. Tectonics 20, 7896.CrossRefGoogle Scholar
Dubertret, L. 1953. Geologie des roches vertes du NW de la Syrie et du Hatay (Turquie): Notes et Mémoires sur le Moyen-Orient 6, 227 pp.Google Scholar
Dubertret, L. 1955. Carte Géologique du Liban au 1/200,000, Avec Notice Explicative. Beyrouth: Ministère des Travaux Publics.Google Scholar
Erendil, M. 1984. Petrology and structure of the upper crustal rocks of the Kızıldağ ophiolite. In Proceedings of the International Symposium on the Geology of the Taurus Belt, Turkey, 1983 (eds Tekeli, O. & Göncüoglu, A. M.), pp. 269–84. Ankara: Mineral Research and Exploration Institute.Google Scholar
Flower, M. F. J. & Dilek, Y. 2003. Arc-trench rollback and forearc accretion: 1.A collision-induced mantle flow model for Tethyan ophiolites. In Ophiolites in Earth History (eds Dilek, Y. & Robinson, P. T.), pp. 2141. Geological Society of London, Special Publication no. 218.Google Scholar
Galoyan, G., Rolland, Y., Sosson, M., Corsini, M., Billo, S., Verati, C. & Melkonian, R. 2009. Geology, geochemistry and 40Ar/39Ar dating of Sevan ophiolites (Lesser Caucasus, Armenia): evidence for Jurassic back-arc opening and hot spot event between the South Armenian Block and Eurasia. Journal of Asian Earth Sciences 34, 135–53.Google Scholar
Garfunkel, Z. 2006. Neotethyan ophiolites: formation and obduction within the life cycle of the host basins. In Tectonic Development of the Eastern Mediterranean Region (ed. Robertson, A. H. F.), pp. 301–26. Geological Society of London, Special Publication no. 260.Google Scholar
Ghienne, J. F., Monod, O., Kozlu, H. & Dean, W. T. 2010. Cambrian-Ordovician depositional sequence in the Middle East: a perspective from Turkey. Earth-Science Reviews 101, 101–46.Google Scholar
Gnos, E. & Peters, T. 1993. K–Ar ages of the metamorphic sole of the Semail ophiolite: implications for cooling history. Contributions to Mineralogy and Petrology 113, 325–32.Google Scholar
Grazetti, F., Tribuzio, R. & Tiepolo, M. 2009. Structure and U-Pb geochronology of zircons from the Ligurian Ophiolites (Northern Appennine, Italy). In Alpine Ophiolites and Modern Analogues Workshop, 30 September – 2 October 2009, p. 30.Google Scholar
Gutnic, M., Monod, O., Poisson, A. & Dumont, J. F. 1979. Géologie des Taurides Occidentales (Turquie). Mémoires de la Societé géologique de France 137, 1112.Google Scholar
Hacker, B. R. 1994. Rapid emplacement of young oceanic lithosphere – argon geochronology of the Oman Ophiolite. Science 265, 1563–5.Google Scholar
Hacker, B. R. & Gnos, E. 1997. The conundrum of Samail: explaining the metamorphic history. Tectonophysics 279, 215–26.CrossRefGoogle Scholar
Hacker, B. R., Mosenfelder, J. L. & Gnos, E. 1997. Rapid ophiolite emplacement constrained by geochronology and thermal considerations. Tectonics 15, 1230–47.Google Scholar
Hanghøj, K., Kelemen, P. B., Hassler, D. & Godard, M. 2010. Composition and genesis of depleted mantle peridotites from the Wadi Tayin Massif, Oman Ophiolite; major and trace element geochemistry, and Os isotope and PGE systematics. Journal of Petrology 51, 201–27.Google Scholar
Harris, N. B. W., Kelley, S. P. & Okay, A. I. 1994. Postcollision magmatism and tectonics in northwest Turkey. Contributions to Mineralogy and Petrology 117, 241–52.Google Scholar
Hatzipanagiotou, K. & Pe-Piper, G. 1995. Ophiolitic and sub-ophiolitic metamorphic rocks of the Vatera area, southern Lesbos (Greece): geochemistry and geochronology. Ofioliti 20, 1729.Google Scholar
Inwood, J., Anderson, M. W., Morris, A. & Robertson, A. H. F. 2009 a. Successive structural events in the Hatay ophiolite of Turkey: distinguishing pre-, syn- and post-emplacement structures. Tectonophysics 473, 208–22.Google Scholar
Inwood, J., Morris, A., Anderson, M. W. & Robertson, A. H. F. 2009 b. Neotethyan intraoceanic microplate rotation and variations in spreading axis orientation: palaeomagnetic evidence from the Hatay ophiolite (southern Turkey). Earth and Planetary Science Letters 280, 105–17.CrossRefGoogle Scholar
Jacobsen, S. B. & Wasserburg, G. J. 1979. Nd and Sr isotopic study of the Bay of Islands ophiolite complex and the evolution of the source of midocean ridge basalts. Journal of Geophysical Research 84/3B, 7429–45.Google Scholar
Jafri, S. H., Charan, S. N. & Govil, P. K. 1995. Plagiogranite from the Andaman ophiolite belt, Bay of Bengal, India. Journal of the Geological Society, London 152, 681–7.Google Scholar
Jones, G. & Robertson, A. H. F. 1991. Tectono-stratigraphy and evolution of the Mesozoic Pindos ophiolite and related units, northwestern Greece. Journal of the Geological Society, London 148, 267–88.Google Scholar
Koepke, J., Seidel, E. & Kreuzer, H. 2002. Ophiolites on the Southern Aegean islands Crete, Karpathos and Rhodes: composition, geochronology and position within the ophiolite belts of the Eastern Mediterranean. Lithos 65, 183203.Google Scholar
Konstantinou, A., Wirth, K. R. & Vervoort, J. 2007. U-Pb isotopic dating of Troodos plagiogranite, Cyprus by LA-ICP-MS. In 2007 GSA Denver Annual Meeting (28–31 October 2007), Paper No. 143–16. Geological Society of America, Abstracts with Programs 39, 388.Google Scholar
Lanphere, M., Coleman, R., Karamata, S. & Pamic, J. 1975. Age of amphibolites associated with alpine peridotites in the Dinaride ophiolite zone, Yugoslavia. Earth and Planetary Science Letters 26, 271–6.Google Scholar
Lanphere, M. A. 1981. K-Ar ages of metamorphic rocks at the base of the Semail ophiolite, Oman. Journal of Geophysical Research 86, 2777–82.Google Scholar
Laurent, R., Delaloye, M., Vuagnat, M. & Wagner, J. J. 1980. Composition of parental basaltic magma in ophiolites. In ‘Ophiolites’, Proceedings of the International Ophiolite Symposium, Cyprus, 1979 (ed. Panayiotou, A.), pp. 172–81. Nicosia: Cyprus Geological Survey.Google Scholar
Liati, A., Gebauer, D. & Fanning, C. M. 2004. The age of ophiolitic rocks of the Hellenides (Vourinos, Pindos, Crete): first U-Pb ion microprobe (SHRIMP) zircon ages. Chemical Geology 207, 171–88.Google Scholar
Lippard, S. J., Shelton, A. W. & Gass, I. G. 1986. The Ophiolite of Northern Oman. Geological Society of London Memoir 11. Oxford: Blackwell, 178 pp.Google Scholar
Ludwig, K. R. 2003. User's Manual for Isoplot 3.00. Berkeley Geochronology Center Special Publication 4, 74 pp.Google Scholar
Lugmair, G. W. & Marti, K. 1978. Lunar initial 143Nd/144Nd: differential evolution of the lunar crust and mantle. Earth and Planetary Science Letters 39, 3349–57.Google Scholar
Malpas, J., Sporli, K. B., Black, P. M. & Smith, I. E. M. 1992. The Northland ophiolite, New Zealand and implications for plate tectonic evolution of the S.W. Pacific. Geology 20, 149–52.Google Scholar
Michard, P., Gurriet, P., Soudant, N. & Albarède, F. 1985. Nd isotopes in French Phanerozoic shales: external vs. internal aspects of crustal evolution. Geochimica et Cosmochimica Acta 49, 601–10.CrossRefGoogle Scholar
Montigny, R., Le Mer, O. & Whitechurch, H. 1988. K-Ar and 40Ar/39Ar study of metamorphic rocks associated with the Oman ophiolite: tectonic implications. Tectonophysics 151, 345–36.Google Scholar
Morris, A. & Anderson, M. W. 2002. Palaeomagnetic results from the Baër-Bassit ophiolite of northern Syria and their implication for fold tests in sheeted dyke terrains. Physics & Chemistry of the Earth 27, 1215–22.Google Scholar
Morris, A., Anderson, M. W., Robertson, A. H. F. & Al-Riyami, K. 2002. Extreme tectonic rotations within an eastern Mediterranean ophiolite. Earth and Planetary Science Letters 202, 247–61.Google Scholar
Mukasa, S. B. & Ludden, J. N. 1987. Uranium-lead ages of plagiogranites from the Troodos ophiolite, Cyprus, and their tectonic significance. Geology 15, 825–8.Google Scholar
Okay, A. I. 1986. High pressure/low temperature metamorphic rocks of Turkey. In Blueschists and Eclogites (eds Evans, B. W. & Brown, E. H.), pp. 333–48. Geological Society of America Memoir no. 164.Google Scholar
Okay, A. I. & Whitney, D. L. 2010. Blueschists, Ophiolites and Suture Zones in Northwest Turkey. Field Trip Guide Book. Pre-congress excursion, 1–3 October 2010, Geological Society of America. Tectonic Crossroads: Evolving Orogens of Eurasia-Africa-Arabia, Ankara, 4–8 October 2010.Google Scholar
Okrusch, M., Seidel, E., Kreuzer, H. & Harre, W. 1978. Jurassic age of metamorphism at the base of the Brezovica peridotite (Yugoslavia). Earth and Planetary Science Letters 39, 291–7.Google Scholar
Önen, A. P. 2003. Petrology and age study of the Neotethyan ophiolitic rocks of the Anatolides of NW Turkey and comparison with Tauride ophiolites. Journal of Geological Society, London 160, 947–62.Google Scholar
Önen, A. P. & Hall, R. 1993. Ophiolites and related metamorphic rocks from the Kütahya region, NW Turkey. Geological Journal 28, 399412.Google Scholar
Önen, A. P. & Hall, R. 2000. Sub-ophiolite metamorphic rocks from NW Anatolia, Turkey. Journal of Metamorphic Geology 18, 483–95.Google Scholar
Pallister, J. S. & Knight, R. J. 1981. Rare-earth element geochemistry of the Samail ophiolite near Ibra, Oman. Journal of Geophysical Research 86, 2673–97.Google Scholar
Parlak, O. & Delaloye, M. 1996. Geochemistry and timing of post-metamorphic dike emplacement in the Mersin ophiolite (southern Turkey): new age constraints from 40Ar/39Ar geochronology. Terra Nova 8, 585–92.Google Scholar
Parlak, O. & Delaloye, M. 1999. Precise 40Ar/39Ar ages from the metamorphic sole of the Mersin ophiolite (southern Turkey). Tectonophysics 301, 145–58.Google Scholar
Parlak, O., Delaloye, M. & Bingol, E. 1995. Origin of subophiolitic metamorphic rocks beneath the Mersin ophiolite, southern Turkey. Ofioliti 20, 97110.Google Scholar
Parlak, O., Delaloye, M. & Bingöl, E. 1996. Mineral chemistry of ultramafic and mafic cumulates as an indicator of the arc-related origin of the Mersin ophiolite (southern Turkey). Geologische Rundschau 85, 647–62.Google Scholar
Parlak, O., Höck, V. & Delaloye, M. 2000. Supra-subduction zone origin of the Pozantı-Karsantı ophiolite (Southern Turkey) deduced from whole rock and mineral chemistry of the gabbroic cumulates. In Tectonics and Magmatism in Turkey and its Surroundings (eds Bozkurt, E., Winchester, J. A. & Piper, J.), pp. 219–34. Geological Society of London, Special Publication no. 173.Google Scholar
Parlak, O., Höck, V., Kozlu, H. & Delaloye, M. 2004. Oceanic crust generation in an island arc tectonic setting, SE Anatolian Orogenic Belt (Turkey). Geological Magazine 141, 583603.Google Scholar
Parlak, O., Karaoğlan, F., Rizaoğlu, T., Klötzli, U., & Koller, F. 2012. U–Pb and 40Ar–39Ar geochronology of the ophiolites and granitoids from the Tauride belt: implications for the evolution of the Inner Tauride suture. Journal of Geodynamics, published online 11 July 2012. doi: 10.1016/j.jog.2012.06.012.Google Scholar
Parlak, O., Rizaoğlu, T., Bağci, U., Karaoğlan, F. & Höck, V. 2009. Geochemistry of ophiolites in the Southeast Anatolia, Turkey. Tectonophysics 473, 173–87.Google Scholar
Parlak, O., Yılmaz, H. & Boztuğ, D. 2006. Geochemistry and tectonic setting of the metamorphic sole rocks and isolated dykes from the Divriği ophiolite (Sivas, Turkey): evidence for melt generation within an asthenospheric window prior to ophiolite emplacement. Turkish Journal of Earth Sciences 15, 2545.Google Scholar
Pearce, J. A., Lippard, S. S. & Roberts, S. 1984. Characteristics and tectonic significance of suprasubduction zone ophiolites. In Marginal Basin Geology. Volcanic and Associated Sedimentary and Tectonic Processes in Modern and Ancient Marginal Basins (eds Kokelaar, B. P. & Howells, M. F.), pp. 7794. Geological Society of London, Special Publication no. 16.Google Scholar
Pearce, J. A. & Robinson, P. T. 2010. The Troodos ophiolitic complex probably formed in a subduction initiation, slab edge setting. Gondwana Research 18, 6081.Google Scholar
Pedersen, R. B. & Malpas, J. 1984. The origin of oceanic plagiogranites from the Karmoy ophiolite, Western Norway. Contributions to Mineralogy and Petrology 88, 3652.Google Scholar
Pedersen, R. B., Searle, M. P., Carter, A. & Bandopadhyay, P. C. 2010. U–Pb zircon age of the Andaman ophiolite: implications for the beginning of subduction beneath the Andaman–Sumatra arc. Journal of the Geological Society, London 167, 1105–12.Google Scholar
Pişkin, Ö., Delaloye, M., Moritz, R. & Wagner, J. J. 1990. Geochemistry and geothermometry of the Hatay complex Turkey: implication for genesis of the ophiolite sequence. In Proceedings of Troodos Ophiolite Symposium (eds Malpas, J., Moores, E., Panayiotou, A. & Xenophontos, C.), pp. 329–37. Geological Survey of Cyprus.Google Scholar
Pişkin, Ö., Delaloye, M., Selçuk, H. & Wagner, J. J. 1986. Guide to Hatay geology (SE TURKEY). Ofioliti 11 (2), 87104.Google Scholar
Pourteau, A., Candan, O. & Oberhänsli, R. 2010. High-pressure metasediments in central Turkey: constraints on the Neotethyan closure history. Tectonics 29, TC5004, doi: 10.1029/2009TC002650.Google Scholar
Rizaoğlu, T., Parlak, O., Höck, V. & Işler, F. 2006. Nature and significance of Late Cretaceous ophiolitic rocks and its relation to the Baskil granitoid in Elazığ region, SE Turkey. In Tectonic Development of the Eastern Mediterranean Region (eds Robertson, A. H. F. & Mountrakis, D.), pp. 327–50. Geological Society of London, Special Publication no. 260.Google Scholar
Rizaoğlu, T., Parlak, O., Höck, V., Koller, F., Hames, W. E. & Billor, Z. 2009. Andean type active margin formation in the Eastern Taurides: geochemical and geochronological evidence from the Baskil granitoid, SE Turkey. Tectonophysics 473, 188207.Google Scholar
Robertson, A. H. F. 1986 a. Geochemistry and tectonic implications of metalliferous and volcaniclastic sedimentary rocks associated with late ophiolitic extrusives in the Hatay area, southern Turkey. Ofioliti 11, 121–40.Google Scholar
Robertson, A. H. F. 1986 b. The Hatay ophiolite (southern Turkey) in its Eastern Mediterranean tectonic context: a report on some aspects of the field excursion. Ophioliti 11, 105–19.Google Scholar
Robertson, A. H. F. 2002. Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region. Lithos 65, 167.Google Scholar
Robertson, A. H. F. 2004. Development of concepts concerning the genesis and emplacement of Tethyan ophiolites in the Eastern Mediterranean and Oman regions. Earth-Science Reviews 66, 331–87.CrossRefGoogle Scholar
Robertson, A. H. F. 2006. Contrasting modes of ophiolite emplacement in the Eastern Mediterranean region. Geological Society of London, Memoir 32, 235–61.Google Scholar
Robertson, A. H. F. & Dixon, J. E. D. 1984. Introduction: aspects of the geological evolution of the Eastern Mediterranean. In The Geological Evolution of the Eastern Mediterranean (eds Dixon, J. E. & Robertson, A. H. F.), pp. 174. Geological Society of London, Special Publication no. 17.Google Scholar
Robertson, A. H. F., Karamata, S. & Saric, K. 2009. Overview of ophiolites and related Units in the Late Palaeozoic-Early Cenozoic magmatic and tectonic development of Tethys in the northern part of the Balkan region. Lithos 108, 136.Google Scholar
Robertson, A. H. F., Parlak, O., Rizaoğlu, T., Ünlügenç, Ü., Inan, N., Tasli, K. & Ustaömer, T. 2007. Tectonic evolution of the South Tethyan ocean: evidence from the Eastern Taurus Mountains (Elazığ region, SE Turkey). In Deformation of Continental Crust (eds Ries, A. C., Butler, R. W. H. & Graham, R. H.), pp. 231–70. Geological Society of London, Special Publication no. 272.Google Scholar
Robertson, A., Ustaömer, T., Parlak, O., Ünlügenç, U. C., Tasli, K. & Inan, N. 2006. The Berit transect of the Tauride thrust belt, S. Turkey: Late Cretaceous-Early Cenozoic accretionary/collisional processes related to closure of the southern Neotethys. Journal of Asian Earth Sciences 27, 108–45.Google Scholar
Robertson, A. H. F. & Woodcock, N. H. 1980. Tectonic settings of the Troodos Massif in the east Mediterranean. In ‘Ophiolites’, Proceedings of the International Ophiolite Symposium, Cyprus, 1979 (ed. Panayiotou, A.), pp. 3649. Nicosia: Cyprus Geological Survey.Google Scholar
Roddick, J. F., Cameron, W. E. & Smith, A. G. 1979. Permo-Triassic and Jurassic Ar–Ar ages from Greek ophiolites and associated rocks. Nature 279, 788–90.Google Scholar
Rollinson, H. R. 2009. New models for the genesis of plagiogranites in the Oman ophiolite. Lithos 112, 603–14.Google Scholar
Searle, M. & Cox, J. 1999. Tectonic setting, origin, and obduction of the Oman ophiolite. Geological Society of America Bulletin 111, 104–22.Google Scholar
Selçuk, H. 1981. Etude géologique de la partie meridionale du Hatay (Turqiue). Ph.D. thesis, Université de Genève, France, 118 pp. Published thesis.Google Scholar
Serri, G. 1981. The petrochemistry of ophiolite gabbroic complexes: a key for the classification of ophiolites into low-Ti and high-Ti types. Earth and Planetary Science Letters 52, 203–12.Google Scholar
Şengör, C., Satir, M. & Akkök, R. 1984. Timing of tectonic events in the Menderes Massif, Western Turkey: implications for tectonic evolution and evidence for Pan-African basement in Turkey. Tectonics 3, 693707.Google Scholar
Şengör, A. M. C. & Yılmaz, Y. 1981. Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics 75, 81241.Google Scholar
Slama, J., Kosler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood, M. S. A., Morris, G. A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M. N. & Whitehouse, M. J. 2008. Plešovice zircon – a new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology 249, 135.Google Scholar
Sommerauer, J. 1974. Trace elements distribution patterns and mineralogical stability of zircons – an application for combined electron microprobe techniques. Proceedings of the Electron Microscopy Society of South Africa 4, 71–2.Google Scholar
Spray, J. G. 1984. Possible causes and consequences of upper mantle decoupling and ophiolite displacement. In Ophiolites and Oceanic Lithosphere (eds Gass, I. G., Lippard, S. J. & Shelton, A. W.), pp. 255–68. Geological Society of London, Special Publication no. 13.Google Scholar
Spray, J. G., Be'Bien, J., Rex, D. C. & Rodick, J. C. 1984. Age constraints on the igneous and metamorphic evolution of the Hellenic-Dinaric ophiolites. In The Geological Evolution of the Eastern Mediterranean (eds Dixon, J. E. & Robertson, A. H. F.), pp. 619–27. Geological Society of London, Special Publication no. 17.Google Scholar
Spray, J. G. & Roddick, J. C. 1980. Petrology and 40Ar–39Ar geochronology of some Hellenic sub-ophiolite metamorphic rocks. Contributions to Mineralogy and Petrology 72, 4355.Google Scholar
Spray, J. G. & Roddick, J. C. 1981. Evidence for Upper Cretaceous transform fault metamorphism in west Cyprus. Earth and Planetary Science Letters 5, 273–91.Google Scholar
Stampfli, G. M. 2000. Tethyan oceans. In Tectonics and Magmatism in Turkey and Surrounding Area (eds Bozkurt, E., Winchester, J. A. & Piper, J. D. A.), pp. 123. Geological Society of London, Special Publication no. 173.Google Scholar
Sylvester, P. J. & Ghaderi, M. 1997. Trace element analysis of scheelite by excimer laser ablation-inductively coupled plasma-mass spectrometry (ELA-ICP-MS) using a synthetic silicate glass standard. Chemical Geology 141, 4965.Google Scholar
Tekeli, O. & Erendil, M. 1986. Geology and petrology of the Kızıldağ ophiolite (Hatay). Mineral Research and Exploration Institute (MTA) of Turkey Bulletin 21, 2137.Google Scholar
Tekeli, O., Whitechurch, H. & Erendil, M. 1983. The Kızıldağ ophiolite: autochthons, para-autochthons and ophiolites of the Eastern Taurus and Amanos Mountains. Excursion guide. International Symposium on the Geology of the Taurus Belt, Ankara, Turkey.Google Scholar
Thuizat, R., Whitechurch, H., Montigny, R. & Juteau, T. 1981. K-Ar dating of some infra-ophiolitic metamorphic soles from the Eastern Mediterranean: new evidence for oceanic thrustings before obduction. Earth and Planetary Science Letters 52, 302–10.Google Scholar
Thy, P., Brooks, C. K. & Walsh, J. N. 1985. Tectonic and petrogenetic implications of major and rare-earth element chemistry of Troodos glasses, Cyprus. Lithos 18, 165–78.Google Scholar
Tilton, G. R., Hopson, C. A. & Wright, J. E. 1981. Uranium-lead isotopic ages of the Samail ophiolite, Oman, with applications to Tethyan Sea ridge tectonics. Journal of Geophysical Research 86, 2763–76.Google Scholar
Tinkler, C., Wagner, J. J., Delaloye, M. & Selçuk, H. 1981. Tectonic history of the Hatay ophiolites (south Turkey) and their interpretation with the Dead Sea rift. Tectonophysics 72, 2341.Google Scholar
Vergili, Ö. & Parlak, O. 2005. Geochemistry and tectonic setting of metamorphic sole rocks and mafic dikes from the Pınarbaşı (Kayseri) ophiolite, Central Anatolia. Ofioliti 30, 3752.Google Scholar
Wakabayashi, J. & Dilek, Y. 2000. Spatial and temporal relations between ophiolites and their subophiolitic soles: A test of models of forearc ophiolite genesis. In Ophiolites and Oceanic Crust: New Insights From Field Studies and Ocean Drilling (eds Dilek, Y., Moores, E. M., Elthon, D. & Nicolas, A.), pp. 5364. Geological Society of America Special Paper 349.Google Scholar
Warren, C. J., Parrish, R. R., Waters, D. J. & Searle, M. P. 2005. Dating the geologic history of Oman's Semail ophiolite: insights from U–Pb geochronology. Contributions to Mineralogy and Petrology 150, 403–22.Google Scholar
Yİğİtbaş, E., Genç, Ş. C. & Yılmaz, Y. 1993. Güneydoğu Anadolu orojenik kuşağında Maden Grubunun tektonik konumu ve jeolojik önemi. A. Suat Erk Sempozyumu Bildirileri, 2–5 Eylül, A.Ü. Fen Fakültesi Jeoloji Mühendisliği Bölümü, Ankara, pp. 251–64 [in Turkish with English abstract].Google Scholar
Yılmaz, Y. 1993. New evidence and model on the evolution of the southeast Anatolian Orogen. Geological Society of America Bulletin 105, 251–71.Google Scholar
Yılmaz, P. O. & Maxwell, J. C. 1982. K–Ar investigations from the Antalya complex ophiolites, SW Turkey. Ofioliti 2, 527–38.Google Scholar
Yılmaz, Y., Yİğİtbaş, E. & Genç, Ş. C. 1993. Ophiolitic and metamorphic assemblages of Southeast Anatolia and their significance in the geological evolution of the orogenic belt. Tectonics 12, 1280–97.Google Scholar