Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-27T08:08:30.879Z Has data issue: false hasContentIssue false

Aqueous red-emitting silicon nanoparticles for cellular imaging: Consequences of protecting against surface passivation by hydroxide and water for stable red emission

Published online by Cambridge University Press:  23 January 2013

Sheng-Kuei Chiu
Affiliation:
Department of Chemistry, Portland State University, Portland, Oregon 97201
Beth A. Manhat
Affiliation:
Department of Chemistry, Portland State University, Portland, Oregon 97201
William J.I. DeBenedetti
Affiliation:
Department of Chemistry, Portland State University, Portland, Oregon 97201
Anna L. Brown
Affiliation:
Department of Chemistry, Portland State University, Portland, Oregon 97201
Katye Fichter
Affiliation:
Department of Biomedical Engineering, Oregon Health & Sciences University, Portland, Oregon 97239
Tania Vu
Affiliation:
Department of Biomedical Engineering, Oregon Health & Sciences University, Portland, Oregon 97239
Micah Eastman
Affiliation:
Department of Physics, Portland State University, Portland, Oregon 97201
Jun Jiao
Affiliation:
Department of Physics, Portland State University, Portland, Oregon 97201
Andrea M. Goforth*
Affiliation:
Department of Chemistry, Portland State University, Portland, Oregon 97201
*
a)Address all correspondence to this author. e-mail: agoforth@pdx.edu
Get access

Abstract

Stable, aqueous, red-to-near infrared emission is critical for the use of silicon nanoparticles (Si NPs) in biological fluorescence assays, but such Si NPs have been difficult to attain. We report a synthesis and surface modification strategy that protects Si NPs and preserves red photoluminescence (PL) in water for more than 6 mo. The Si NPs were synthesized via high temperature reaction, liberated from an oxide matrix, and functionalized via hydrosilylation to yield hydrophobic particles. The hydrophobic Si NPs were phase transferred to water using the surfactant cetyltrimethylammonium bromide (CTAB) with retention of red PL. CTAB apparently serves a double role in providing stable, aqueous, red-emitting Si NPs by (i) forming a hydrophobic barrier between the Si NPs and water and (ii) providing aqueous colloidal stability via the polar head group. We demonstrate preservation of the aqueous red emission of these Si NPs in biological media and examine the effects of pH on emission color.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baxter, J.B. and Aydil, E.S.: Nanowire-based dye-sensitized solar cells. Appl. Phys. Lett. 86, 053114 (2005).CrossRefGoogle Scholar
Plass, R., Pelet, S., Krueger, J., Gratzel, M., and Bach, U.: Quantum dot sensitization of organic-inorganic hybrid solar cells. J. Phys. Chem. B 106, 7578 (2002).CrossRefGoogle Scholar
Gao, X.H., Cui, Y.Y., Levenson, R.M., Chung, L.W.K., and Nie, S.M.: In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22, 969 (2004).CrossRefGoogle ScholarPubMed
Park, J.H., Gu, L., von Maltzahn, G., Ruoslahti, E., Bhatia, S.N., and Sailor, M.J.: Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat. Mater. 8, 331 (2009).CrossRefGoogle ScholarPubMed
Canham, L.T.: Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046 (1990).CrossRefGoogle Scholar
Alivisatos, A.P.: Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100, 13226 (1996).CrossRefGoogle Scholar
Belyakov, V.A., Burdov, V.A., Lockwood, R., and Meldrum, A.: Silicon nanocrystals: Fundamental theory and implications for stimulated emission. Adv. Opt. Technol. 1 (2008), Article ID 279502.CrossRefGoogle Scholar
Green, M.A., Zhao, J.H., Wang, A.H., Reece, P.J., and Gal, M.: Efficient silicon light-emitting diodes. Nature 412, 805 (2001).CrossRefGoogle ScholarPubMed
Torres-Costa, V., Martin-Palma, R.J., and Martinez-Duart, J.M.: All-silicon color-sensitive photodetectors in the visible. Mater. Sci. Eng., C 27, 954 (2007).CrossRefGoogle Scholar
Walters, R.J., Bourianoff, G.I., and Atwater, H.A.: Field-effect electroluminescence in silicon nanocrystals. Nat. Mater. 4, 143 (2005).CrossRefGoogle ScholarPubMed
Derfus, A.M., Chan, W.C.W., and Bhatia, S.N.: Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 4, 11 (2004).CrossRefGoogle ScholarPubMed
Erogbogbo, F., Yong, K-T., Roy, I., Hu, R., Law, W-C., Zhao, W., Ding, H., Wu, F., Kumar, R., Swihart, M.T., and Prasad, P.N.: In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals. ACS Nano 5, 413 (2011).CrossRefGoogle ScholarPubMed
Manhat, B.A., Brown, A.L., Black, L.A., Ross, J.B.A., Fichter, K., Vu, T., Richman, E., and Goforth, A.M.: One-step melt synthesis of water-soluble, photoluminescent, surface-oxidized silicon nanoparticles for cellular imaging applications. Chem. Mater. 23, 2407 (2011).CrossRefGoogle ScholarPubMed
Rosso-Vasic, M., Spruijt, E., Popovic, Z., Overgaag, K., van Lagen, B., Grandidier, B., Vanmaekelbergh, D., Dominguez-Gutierrez, D., De Cola, L., and Zuilhof, H.: Amine-terminated silicon nanoparticles: Synthesis, optical properties and their use in bioimaging. J. Mater. Chem. 19, 5926 (2009).CrossRefGoogle Scholar
Shiohara, A., Hanada, S., Prabakar, S., Fujioka, K., Lim, T.H., Yamamoto, K., Northcote, P.T., and Tilley, R.D.: Chemical reactions on surface molecules attached to silicon quantum dots. J. Am. Chem. Soc. 132, 248 (2010).CrossRefGoogle ScholarPubMed
Warner, J.H., Rubinsztein-Dunlop, H., and Tilley, R.D.: Surface morphology dependent photoluminescence from colloidal silicon nanocrystals. J. Phys. Chem. B 109, 19064 (2005).CrossRefGoogle ScholarPubMed
Buriak, J.M.: Organometallic chemistry on silicon surfaces: Formation of functional monolayers bound through Si-C bonds. Chem. Commun. 1051 (1999).CrossRefGoogle Scholar
Aldana, J., Wang, Y.A., and Peng, X.G.: Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. J. Am. Chem. Soc. 123, 8844 (2001).CrossRefGoogle ScholarPubMed
Canham, L.T.: Bioactive silicon structure fabrication through nanoetching techniques. Adv. Mater. 7, 1033 (1995).CrossRefGoogle Scholar
Popplewell, J.F., King, S.J., Day, J.P., Ackrill, P., Fifield, L.K., Cresswell, R.G., Di Tada, M.L., and Liu, K.: Kinetics of uptake and elimination of silicic acid by a human subject: A novel application of 32 Si and accelerator mass spectrometry. J. Inorg. Biochem. 69, 177 (1998).CrossRefGoogle Scholar
He, Y., Kang, Z.H., Li, Q.S., Tsang, C.H.A., Fan, C.H., and Lee, S.T.: Ultrastable, highly fluorescent, and water-dispersed silicon-based nanospheres as cellular probes. Angew. Chem. Int. Ed. 48, 128 (2009).CrossRefGoogle ScholarPubMed
Hessel, C.M., Henderson, E.J., Kelly, J.A., Cavell, R.G., Sham, T.K., and Veinot, J.G.C.: Origin of luminescence from silicon nanocrystals: A near edge x-ray absorption fine structure (NEXAFS) and x-ray excited optical luminescence (XEOL) study of oxide-embedded and free-standing systems. J. Phys. Chem. C 112, 14247 (2008).CrossRefGoogle Scholar
Bley, R.A., Kauzlarich, S.M., Davis, J.E., and Lee, H.W.H.: Characterization of silicon nanoparticles prepared from porous silicon. Chem. Mater. 8, 1881 (1996).CrossRefGoogle Scholar
Tamura, H., Ruckschloss, M., Wirschem, T., and Veprek, S.: Origin of the green-blue luminescence from nanocrystalline silicon. Appl. Phys. Lett. 65, 1537 (1994).CrossRefGoogle Scholar
Kanemitsu, Y.: Luminescence properties of nanometer-sized Si crystallites-core and surface-states. Phys. Rev. B 49, 16845 (1994).CrossRefGoogle ScholarPubMed
Godefroo, S., Hayne, M., Jivanescu, M., Stesmans, A., Zacharias, M., Lebedev, O.I., Van Tendeloo, G., and Moshchalkov, V.V.: Classification and control of the origin of photoluminescence from Si nanocrystals. Nat. Nanotechnol. 3, 174 (2008).CrossRefGoogle ScholarPubMed
Yang, S., Li, W., Cao, B., Zeng, H., and Cai, W.: Origin of blue emission from silicon nanoparticles: Direct transition and interface recombination. J. Phys. Chem. C 115, 21056 (2011).CrossRefGoogle Scholar
de Boer, W., Timmerman, D., Dohnalova, K., Yassievich, I.N., Zhang, H., Buma, W.J., and Gregorkiewicz, T.: Red spectral shift and enhanced quantum efficiency in phonon-free photoluminescence from silicon nanocrystals. Nat. Nanotechnol. 5, 878 (2010).CrossRefGoogle ScholarPubMed
Vincent, J., Maurice, V., Paquez, X., Sublemontier, O., Leconte, Y., Guillois, O., Reynaud, C., Herlin-Boime, N., Raccurt, O., and Tardif, F.: Effect of water and UV passivation on the luminescence of suspensions of silicon quantum dots. J. Nanopart. Res. 12, 39 (2010).CrossRefGoogle Scholar
Coxon, P.R., Wang, Q., and Chao, Y.: An abrupt switch between the two photoluminescence bands within alkylated silicon nanocrystals. J. Appl. Phys. D 44, 495301 (2011).CrossRefGoogle Scholar
Chao, Y., Houlton, A., Horrocks, B.R., Hunt, M.R.C., Poolton, N.R.J., Yang, J., and Siller, L.: Optical luminescence from alkyl-passivated Si nanocrystals under vacuum ultraviolet excitation: Origin and temperature dependence of the blue and orange emissions. Appl. Phys. Lett. 88, 263119 (2006).CrossRefGoogle Scholar
Zhou, Z.Y., Brus, L., and Friesner, R.: Electronic structure and luminescence of 1.1- and 1.4-nm silicon nanocrystals: Oxide shell versus hydrogen passivation. Nano Lett. 3, 163 (2003).CrossRefGoogle Scholar
Wang, X., Zhang, R.Q., Niehaus, T.A., and Frauenheim, T.: Excited state properties of allylamine-capped silicon quantum dots. J. Phys. Chem. C 111, 2394 (2007).CrossRefGoogle Scholar
Liu, S.M.: Luminescent silicon nanoparticles formed in solution. J. Nanosci. Nanotechnol. 8, 1110 (2008).CrossRefGoogle ScholarPubMed
Rosso-Vasic, M., Spruijt, E., van Lagen, B., De Cola, L., and Zuilhof, H.: Alkyl-functionalized oxide-free silicon nanoparticles: Synthesis and optical properties. Small 4, 1835 (2008).CrossRefGoogle ScholarPubMed
Holmes, J.D., Ziegler, K.J., Doty, R.C., Pell, L.E., Johnston, K.P., and Korgel, B.A.: Highly luminescent silicon nanocrystals with discrete optical transitions. J. Am. Chem. Soc. 123, 3743 (2001).CrossRefGoogle ScholarPubMed
Mangolini, L., Jurbergs, D., Rogojina, E., and Kortshagen, U.: High efficiency photoluminescence from silicon nanocrystals prepared by plasma synthesis and organic surface passivation. Phys. Status Solidi C 3, 3975 (2006).CrossRefGoogle Scholar
Jurbergs, D., Rogojina, E., Mangolini, L., and Kortshagen, U.: Silicon nanocrystals with ensemble quantum yields exceeding 60%. Appl. Phys. Lett. 88, 233116 (2006).CrossRefGoogle Scholar
Kang, Z.H., Liu, Y., Tsang, C.H.A., Ma, D.D.D., Fan, X., Wong, N.B., and Lee, S.T.: Water-soluble silicon quantum dots with wavelength-tunable photoluminescence. Adv. Mater. 21, 661 (2009).CrossRefGoogle Scholar
Hessel, C.M., Henderson, E.J., and Veinot, J.G.C.: Hydrogen silsesquioxane: A molecular precursor for nanocrystalline Si-SiO2 composites and freestanding hydride-surface-terminated silicon nanoparticles. Chem. Mater. 18, 6139 (2006).CrossRefGoogle Scholar
Gupta, A., Swihart, M.T., and Wiggers, H.: Luminescent colloidal dispersion of silicon quantum dots from microwave plasma synthesis: Exploring the photoluminescence behavior across the visible spectrum. Adv. Funct. Mater. 19, 696 (2009).CrossRefGoogle Scholar
English, D.S., Pell, L.E., Yu, Z.H., Barbara, P.F., and Korgel, B.A.: Size tunable visible luminescence from individual organic monolayer stabilized silicon nanocrystal quantum dots. Nano Lett. 2, 681 (2002).CrossRefGoogle Scholar
Hessel, C.M., Reid, D., Panthani, M.G., Rasch, M.R., Goodfellow, B.W., Wei, J., Fujii, H., Akhavan, V., and Korgel, B.A.: Synthesis of ligand-stabilized silicon nanocrystals with size-dependent photoluminescence spanning visible to near-infrared wavelengths. Chem. Mater. 24, 393 (2012).CrossRefGoogle Scholar
Li, X.G., He, Y.Q., Talukdar, S.S., and Swihart, M.T.: Process for preparing macroscopic quantities of brightly photoluminescent silicon nanoparticles with emission spanning the visible spectrum. Langmuir 19, 8490 (2003).CrossRefGoogle Scholar
Zhang, X.M., Neiner, D., Wang, S.Z., Louie, A.Y., and Kauzlarich, S.M.: A new solution route to hydrogen-terminated silicon nanoparticles: Synthesis, functionalization and water stability. Nanotechnology 18, 095601 (2007).CrossRefGoogle ScholarPubMed
Warner, J.H., Hoshino, A., Yamamoto, K., and Tilley, R.D.: Water-soluble photoluminescent silicon quantum dots. Angew. Chem. Int. Ed. 44, 4550 (2005).CrossRefGoogle ScholarPubMed
Lin, S.W. and Chen, D.H.: Synthesis of water-soluble blue photoluminescent silicon nanocrystals with oxide surface passivation. Small 5, 72 (2009).CrossRefGoogle ScholarPubMed
Rogozhina, E.V., Eckhoff, D.A., Gratton, E., and Braun, P.V.: Carboxyl functionalization of ultrasmall luminescent silicon nanoparticles through thermal hydrosilylation. J. Mater. Chem. 16, 1421 (2006).CrossRefGoogle Scholar
Tilley, R.D. and Yamamoto, K.: The microemulsion synthesis of hydrophobic and hydrophilic silicon nanocrystals. Adv. Mater. 18, 2053 (2006).CrossRefGoogle Scholar
Brewer, A. and Von Haeften, K.: In-situ passivation and blue luminescence of silicon clusters using a cluster-beam/H2O co-deposition production method. Appl. Phys. Lett. 94, 261102 (2009).CrossRefGoogle Scholar
Tilley, R.D., Warner, J.H., Yamamoto, K., Matsui, I., and Fujimori, H.: Micro-emulsion synthesis of monodisperse surface stabilized silicon nanocrystals. Chem. Commun. 1833 (2005).CrossRefGoogle ScholarPubMed
Wilcoxon, J.P., Samara, G.A., and Provencio, P.N.: Optical and electronic properties of Si nanoclusters synthesized in inverse micelles. Phys. Rev. B 60, 2704 (1999).CrossRefGoogle Scholar
Allan, G., Delerue, C., and Lannoo, M.: On the nature of luminescent surface states of semiconductor nanocrystallites. Phys. Rev. Lett. 76, 2961 (1996).CrossRefGoogle ScholarPubMed
Ray, M., Sarkar, S., Bandyopadhyay, N.R., Hossain, S.M., and Pramanick, A.K.: Silicon and silicon oxide core-shell nanoparticles: Structural and photoluminescence characteristics. J. Appl. Phys. 105, 074301 (2009).CrossRefGoogle Scholar
Qin, G.G., Song, H.Z., Zhang, B.R., Lin, J., Duan, J.Q., and Yao, G.Q.: Experimental evidence for luminescence from silicon oxide layers in oxidized porous silicon. Phys. Rev. B 54, 2548 (1996).CrossRefGoogle ScholarPubMed
Li, Z.F. and Ruckenstein, E.: Water-soluble poly(acrylic acid) grafted luminescent silicon nanoparticles and their use as fluorescent biological staining labels. Nano Lett. 4, 1463 (2004).CrossRefGoogle Scholar
Kravitz, K., Kamyshny, A., Gedanken, A., and Magdassi, S.: Solid state synthesis of water-dispersible silicon nanoparticles from silica nanoparticles. J. Solid State Chem. 183, 1442 (2010).CrossRefGoogle Scholar
Erogbogbo, F., Yong, K.T., Roy, I., Xu, G.X., Prasad, P.N., and Swihart, M.T.: Biocompatible luminescent silicon quantum dots for imaging of cancer cells. ACS Nano 2, 873 (2008).CrossRefGoogle ScholarPubMed
Erogbogbo, F., Tien, C-A., Chang, C-W., Yong, K-T., Law, W-C., Ding, H., Roy, I., Swihart, M.T., and Prasad, P.N.: Bioconjugation of luminescent silicon quantum dots for selective uptake by cancer cells. Bioconjugate Chem. 22, 1081 (2011).CrossRefGoogle ScholarPubMed
Henderson, E.J., Kelly, J.A., and Veinot, J.G.C.: Influence of HSiO1.5 sol-gel polymer structure and composition on the size and luminescent properties of silicon nanocrystals. Chem. Mater. 21, 5426 (2009).CrossRefGoogle Scholar
Operation Manual for Quanta-phi Rev. C. (Horiba Jobin-Yvon, Edison, NJ, 2010).Google Scholar
Porres, L., Holland, A., Palsson, L., Monkman, A.P., Kemp, C., and Beeby, A.: Absolute measurements of photoluminescence quantum yields of solutions using an integrating sphere. J. Fluorescence 16, 267 (2006).CrossRefGoogle ScholarPubMed
NIH ImageJ: http://rsbweb.nih.gov/ij/ (accessed May 29, 2012).Google Scholar
Hessel, C., Henderson, E.J., and Veinot, J.G.C.: An investigation of the formation and growth of oxide-embedded silicon nanocrystals in hydrogen silsesquioxane-derived nanocomposites. J. Phys. Chem. C 111, 6956 (2007).CrossRefGoogle Scholar
Veinot, J.G.C.: Sol-gel precursors for Group 14 nanocrystals. Chem. Commun. 46, 8404 (2010).Google Scholar
Higashi, G.S., Chabal, Y.J., Trucks, G.W., and Raghavachari, K.: Ideal hydrogen termination of the Si(111) surface. Appl. Phys. Lett. 56, 656 (1990).CrossRefGoogle Scholar
Michalak, D.J., Amy, S.R., Aureau, D., Dai, M., Esteve, A., and Chabal, Y.J.: Nanopatterning Si(111) surfaces as selective surface-chemistry route. Nat. Mater. 9, 266 (2010).CrossRefGoogle ScholarPubMed
Pasternack, R.M., Amy, S.R., and Chabal, Y.J.: Attachment of 3-(aminopropyl)triethoxysilane on silicon oxide surfaces: Dependence on solution temperature. Langmuir 24, 12963 (2008).CrossRefGoogle ScholarPubMed
Thissen, P., Peixoto, T., Longo, R.C., Peng, W.G., Cho, K., and Chabal, Y.J.: Activation of surface hydroxyl groups by modification of H-terminated Si(111) surfaces. J. Am. Chem. Soc. 134, 8869 (2012).CrossRefGoogle Scholar
Mazumder, S., Dey, R., Mitra, M.K., Mukherjee, S., and Das, G.C.: Review: Biofunctionalized quantum dots in biology and medicine. J. Nanomater. (2009). doi: 10.1155/2009/815734.CrossRefGoogle Scholar
Shirahata, N., Linford, M.R., Furumi, S., Pei, L., Sakka, Y., Gates, R.J., and Asplund, M.C.: Laser-derived one-pot synthesis of silicon nanocrystals terminated with organic monolayers. Chem. Commun. 4684 (2009).CrossRefGoogle ScholarPubMed
Liu, J. and Du, X.: Ph- and competitor-driven nanovalves of cucurbit[7]uril pseudorotaxanes based on mesoporous silica supports for controlled release. J. Mater. Chem. 20, 3642 (2010).CrossRefGoogle Scholar
Supplementary material: PDF

Chiu et al. supplementary material

Supplementary figure S1

Download Chiu et al. supplementary material(PDF)
PDF 8 MB