Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-29T14:57:57.176Z Has data issue: false hasContentIssue false

Influence of Sn on the structural and thermoelectric properties of the type-I clathrates Ba8Cu5Si6Ge35-xSnx (0 ≤ x ≤ 0.6)

Published online by Cambridge University Press:  18 January 2013

X. Yan
Affiliation:
Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstr. 8–10, 1040 Vienna, Austria.
E. Bauer
Affiliation:
Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstr. 8–10, 1040 Vienna, Austria.
P. Rogl
Affiliation:
Institute of Physical Chemistry, University of Vienna, Währingerstr. 42, 1090 Vienna, Austria.
S. Paschen
Affiliation:
Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstr. 8–10, 1040 Vienna, Austria.
Get access

Abstract

On the search for cost-competitive thermoelectric clathrates we have investigated the influence of Sn substitutions for Ge on the structural and thermoelectric properties of the type-I clathrate Ba8Cu5Si6Ge35. The solid solubility of Sn was found to be limited to 0.6 atoms per unit cell. A series of compounds with the nominal compositions Ba8Cu5Si6Ge35-xSnx (x = 0.2, 0.4, 0.6) was synthesized in a high-frequency furnace. The samples were annealed, and subsequently ball milled and hot pressed. The hot pressed samples were characterized by X-ray powder diffraction, energy-dispersive X-ray spectroscopy and transport property measurements. Our results show that the substitution of Ge by Sn introduces vacancies at the 6d site of the type-I clathrate structure and shifts the highest dimensionless thermoelectric figure of merit ZT from 570 °C for the Sn free sample to lower temperatures. The highest figure of merit ZT = 0.42 is reached at about 320 °C for the Sn-substituted sample Ba8Cu5Si6Ge35Sn0.6.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Slack, G. A., CRC Handbook of Thermoelectrics, edited by Rowe, D. M. (Boca Raton, FL: CRC, 1995), pp. 407.Google Scholar
Slack, G. A., Mater. Res. Soc. Symp. Proc. 47, 478 (1997).Google Scholar
Kasper, J., Hagenmuller, P., Pouchard, M., and Cros, C., Science 150, 1713 (1965)CrossRefGoogle Scholar
Cohn, J. L., Nolas, G. S., Fessatidis, V., Metcalf, T. H., and Slack, G. A., Phys. Rev. Lett. 82, 779 (1999).CrossRefGoogle Scholar
Nolas, G. S., Weakley, T. J. R., Cohn, J. L., and Sharma, R., Phys. Rev. B 61, 3845 (2000).CrossRefGoogle Scholar
Nolas, G. S., Chakoumakos, B. C., Mahieu, B., Long, G. J., and Weakley, T. J. R., Chem. Mater. 12, 1947 (2000).CrossRefGoogle Scholar
Christensen, M., Abrahamsen, A. B., Christensen, N. B., Juranyi, F., Andersen, N. H., Lefmann, K., Andreasson, J., Bal, C. R. H., and Iversen, B. B., Nature Mater. 7, 811 (2008).CrossRefGoogle Scholar
Euchner, H., Mihalkovic, M., Gähler, F., Johnson, M. R., Schober, H., Rols, S., Suard, E., Bosak, A., Ohhashi, S., Tsai, A.-P., Lidin, S., Gomez, C. P., Custers, J., Paschen, S., and de Boissieui, M., Phys. Rev. B 83, 144202 (2011)CrossRefGoogle Scholar
Schäfer, H., Annu. Rev. Mater. Sci. 15, 1 (1985).CrossRefGoogle Scholar
Carrrillo-Cabrera, W., Budnyk, S., Prots, Y., and Grin, Y., Z. Anorg. Allg. Chem. 630, 7226 (2004).Google Scholar
Fukuoka, H., Kiyoto, J., and Yamanaka, S., J. Solid State Chem. 175, 237244 (2003).CrossRefGoogle Scholar
Christensen, M., Johnsen, S., and Iversen, B. B., Dalton Trans. 39, 978 (2010).CrossRefGoogle Scholar
Yan, X., Bauer, E., Rogl, P., and Paschen, S., submitted Phys. Rev. B.Google Scholar
Shi, X., Yang, J., Bai, S., Yang, J., Wang, H., Chi, M., Salvador, J. R., Zhang, W., Chen, L., and Wong-Ng, W., Adv. Funct. Mater. 20, 755 (2010).CrossRefGoogle Scholar
Johnsen, S., Bentien, A., Madsen, G. K. H., and Iversen, B. B., Chem. Mater. 18, 4633 (2006).CrossRefGoogle Scholar
Bentien, A., Johnsen, S., and Iversen, B. B., Phys. Rev. B 73, 09403 (2006).CrossRefGoogle Scholar
Nguyen, L. T. K., Aydemir, U., Baitinger, M., Bauer, E., Borrmann, H., Burkhardt, U., Custers, J., Haghighirad, A., Höfler, R., Luther, K. D., Ritter, F., Assmus, W., Grin, Y., and Paschen, S., Dalton Trans. 39, 1071 (2010).CrossRefGoogle Scholar
Hokazono, M., Anno, H., and Matsubara, K., Mater. Trans. 46(07), 1485 (2005).CrossRefGoogle Scholar
Yan, X., Chen, M. X., Laumann, S., Bauer, E., Rogl, P., Podloucky, R., and Paschen, S., Phys. Rev. B 85, 165127 (2012).CrossRefGoogle Scholar
Yan, X., Grytsiv, A., Giester, G., Bauer, E., Rogl, P., and Paschen, S., J. Electron. Mater. 40, 589 (2011).CrossRefGoogle Scholar
Falmbigl, M., Grytsiv, A., Rogl, P., Yan, X., Royanian, E., and Bauer, E., submitted to Dalton Trans. DOI: 10.1039/c2dt32049e.CrossRefGoogle Scholar
Goldsmid, G. J. and Sharp, J. W., J. Electron. Mater. 28, 869 (1999).CrossRefGoogle Scholar
Price, P. J., Philos. Mag. 46, 1252 (1955).CrossRefGoogle Scholar