Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-23T17:11:39.084Z Has data issue: false hasContentIssue false

Asymptotic behaviour and numerical approximation of optimal eigenvalues of the Robin Laplacian

Published online by Cambridge University Press:  16 January 2013

Pedro Ricardo Simão Antunes
Affiliation:
Group of Mathematical Physics of the University of Lisbon, Complexo Interdisciplinar, av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal. pant@cii.fc.ul.pt; jkennedy@cii.fc.ul.pt Department of Mathematics, Universidade Lusófona de Humanidades e Tecnologias, av. do Campo Grande, 376, 1749-024 Lisboa, Portugal
Pedro Freitas
Affiliation:
Group of Mathematical Physics of the University of Lisbon, Complexo Interdisciplinar, av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal. pant@cii.fc.ul.pt; jkennedy@cii.fc.ul.pt Department of Mathematics, Faculty of Human Kinetics of the Technical University of Lisbon and Group of Mathematical Physics of the University of Lisbon, Complexo Interdisciplinar, av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal; freitas@cii.fc.ul.pt
James Bernard Kennedy
Affiliation:
Group of Mathematical Physics of the University of Lisbon, Complexo Interdisciplinar, av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal. pant@cii.fc.ul.pt; jkennedy@cii.fc.ul.pt Institute of Applied Analysis, University of Ulm, Helmoltzstr. 18, 89069 Ulm, Germany
Get access

Abstract

We consider the problem of minimising the nth-eigenvalue of the Robin Laplacian in RN. Although for n = 1,2 and a positive boundary parameter α it is known that the minimisers do not depend on α, we demonstrate numerically that this will not always be the case and illustrate how the optimiser will depend on α. We derive a Wolf–Keller type result for this problem and show that optimal eigenvalues grow at most with n1/N, which is in sharp contrast with the Weyl asymptotics for a fixed domain. We further show that the gap between consecutive eigenvalues does go to zero as n goes to infinity. Numerical results then support the conjecture that for each n there exists a positive value of αn such that the nth eigenvalue is minimised by n disks for all 0 < α < αn and, combined with analytic estimates, that this value is expected to grow with n1/N.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alves, C.J.S. and Antunes, P.R.S., The method of fundamental solutions applied to the calculation of eigenfrequencies and eigenmodes of 2D simply connected shapes. Comput. Mater. Continua 2 (2005) 251266. Google Scholar
P.R.S. Antunes and P. Freitas, Numerical optimization of low eigenvalues of the Dirichlet and Neumann Laplacians. J. Optim. Theory Appl. 154 (2012). DOI: 10.1007/s10957-011-9983-3. CrossRef
Bossel, M.-H., Membranes élastiquement liées : extension du théorème de Rayleigh–Faber–Krahn et de l’inégalité de Cheeger. C. R. Acad. Sci. Paris Sér. I Math. 302 (1986) 4750. Google Scholar
D. Bucur, Minimization of the kth eigenvalue of the Dirichlet Laplacian. Preprint (2012).
Bucur, D. and Daners, D., An alternative approach to the Faber-Krahn inequality for Robin problems. Calc. Var. Partial Differ. Equ. 37 (2010) 7586. Google Scholar
Bucur, D. and Henrot, A., Minimization of the third eigenvalue of the Dirichlet Laplacian. R. Soc. Lond. Proc. A 456 (2000) 985996. Google Scholar
B. Colbois and A. El Soufi, Extremal eigenvalues of the Laplacian on Euclidean domains and Riemannian manifolds. Preprint (2012).
R. Courant and D. Hilbert, Methods of mathematical physics I. Interscience Publishers, New York (1953).
Curtis, F.E. and Overton, M.L., A sequential quadratic programming algorithm for nonconvex, nonsmooth constrained optimization. SIAM J. Optim. 22 (2012) 474500. Google Scholar
Dancer, E.N. and Daners, D., Domain perturbation for elliptic equations subject to Robin boundary conditions. J. Differ. Equ. 138 (1997) 86132. Google Scholar
Daners, D., A Faber-Krahn inequality for Robin problems in any space dimension. Math. Ann. 335 (2006) 767785. Google Scholar
G. Faber, Beweis, dass unter allen homogenen membranen von gleicher Fläche und gleicher spannung die kreisförmige den tiefsten grundton gibt. Sitz. Ber. Bayer. Akad. Wiss. (1923) 169–172.
Giorgi, T. and Smits, R., Bounds and monotonicity for the generalized Robin problem. Z. Angew. Math. Phys. 59 (2008) 600618. Google Scholar
A. Henrot, Extremum problems for eigenvalues of elliptic operators. Frontiers in Mathematics. Birkhäuser Verlag, Basel (2006).
T. Kato, Perturbation theory for linear operators, 2nd edition. Springer-Verlag, Berlin. Grundlehren der Mathematischen Wissenschaften 132 (1976).
Kennedy, J.B., An isoperimetric inequality for the second eigenvalue of the Laplacian with Robin boundary conditions. Proc. Amer. Math. Soc. 137 (2009) 627633. Google Scholar
Kennedy, J.B., On the isoperimetric problem for the higher eigenvalues of the Robin and Wentzell Laplacians. Z. Angew. Math. Phys. 61 (2010) 781792. Google Scholar
Krahn, E., Über eine von Rayleigh formulierte minimaleigenschaft des kreises. Math. Ann. 94 (1924) 97100. Google Scholar
Krahn, E., Über Minimaleigenshaften der Kugel in drei und mehr dimensionen. Acta Comm. Univ. Dorpat. A 9 (1926) 144. Google Scholar
Lacey, A.A., Ockendon, J.R. and Sabina, J., Multidimensional reaction-diffusion equations with nonlinear boundary conditions. SIAM J. Appl. Math. 58 (1998) 16221647. Google Scholar
D. Mazzoleni and A. Pratelli, Existence of minimizers for spectral problems. Preprint (2012).
J. Nocedal and S.J. Wright, Numer. Optim. Springer (1999).
Oudet, E., Numerical minimization of eigenmodes of a membrane with respect to the domain. ESAIM : COCV 10 (2004) 315330. Google Scholar
J.W.S. Rayleigh, The theory of sound, 2nd edition. Macmillan, London (1896) (reprinted : Dover, New York (1945)).
W. Rudin, Real and Complex Analysis, 3rd edition. McGraw-Hill, New York (1987).
Szegö, G., Inequalities for certain eigenvalues of a membrane of given area. J. Rational Mech. Anal. 3 (1954) 343356. Google Scholar
Weinberger, H.F., An isoperimetric inequality for the N-dimensional free membrane problem. J. Rational Mech. Anal. 5 (1956) 633636. Google Scholar
Wolf, S.A. and Keller, J.B., Range of the first two eigenvalues of the Laplacian. Proc. Roy. Soc. London A 447, (1994) 397412. Google Scholar