Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-17T17:12:11.069Z Has data issue: false hasContentIssue false

Evidence for Circumstellar Material in Type Ia Supernovae via Sodium Absorption Features

Published online by Cambridge University Press:  17 January 2013

Assaf Sternberg*
Affiliation:
Benoziyo Center for Astrophysics, Faculty of Physics, Weizmann Institute of Science, Rehovot 76100, Israel email: assaf.sternberg@weizmann.ac.il
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Type Ia supernovae are very good tools for measuring distances on a cosmic scale. The consensus view is that mass transfer onto a white dwarf in a close binary system leads to a thermonuclear explosion, though the nature of the mass donor is still uncertain. In the single-degenerate model it is a main-sequence star or an evolved star. In the double-degenerate model it is another white dwarf. We study the velocity structure of absorbing material along the line of sight to 35 Type Ia supernovae and find a statistical preference for blueshifted structures, likely arising in gas outflows from the supernova progenitor systems, consistent with a single-degenerate progenitor for a substantial fraction of Type Ia supernovae in nearby spiral galaxies.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Ben Bekhti, N., et al. 2008 A&A, 487, 583Google Scholar
Blondin, S., et al. 2009 ApJ, 693, 207Google Scholar
Branch, D., Livio, M., Yungelson, L. R., Boffi, F. R., & Baron, E. 1995 PASP, 107, 1019Google Scholar
Bregman, J. N. 1980 ApJ, 237, 280CrossRefGoogle Scholar
Chugai, N. N. 2008 Astron. Lett. 34, 389Google Scholar
Hachisu, I., Kato, M., & Nomoto, K. 1999 ApJ, 522, 487Google Scholar
Hachisu, I., Kato, M., & Nomoto, K. 2008 ApJ, 679, 1390Google Scholar
Iben, I. & Tutukov, A. V. 1984 ApJS 54, 335Google Scholar
James, P. A. & Anderson, J. P. 2006 A&A, 453, 57Google Scholar
Patat, F., et al. 2007, Science, 317, 924Google Scholar
Patat, F., Cox, N. L. J., Parrent, J., & Branch, D. 2010, A&A, 514, 78Google Scholar
Patat, F., et al. 2011 A&A, 530, 63Google Scholar
Perlmutter, S., et al. 1999, ApJ, 517, 565Google Scholar
Riess, A. G., et al. 1998, AJ, 116, 1009Google Scholar
Shapiro, P. R. & Field, G. B. 1976 ApJ, 205, 762Google Scholar
Simon, J. D., et al. 2009 ApJ, 702, 1157Google Scholar
Sternberg, A., et al. 2011 Science, 333, 856Google Scholar
Stritzinger, M., et al. 2010 AJ, 140, 2036Google Scholar
Weiner, B., et al. 2009, ApJ, 692, 187Google Scholar
Whelan, J. & Iben, I. 1973, ApJS, 54, 335Google Scholar