Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T01:37:13.263Z Has data issue: false hasContentIssue false

Connecting Recurrent Novae to [Some] Type Ia Supernovae

Published online by Cambridge University Press:  17 January 2013

Ferdinando Patat*
Affiliation:
European Southern Observatory, K. Schwarzschild-Str. 2, D-85748, Garching b. München, Germany email: fpatat@eso.org
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this review, I summarize the observational attempts made so far to unveil the nature of the progenitor system(s) of Type Ia supernovae. In particular, I focus on the most recent developments that followed the claimed detection of circumstellar material around a few events, and on the link this possibly establishes with recurrent novae. In this framework, I then discuss the case of RS Oph, what we know of its circumstellar environment, and what this is telling us about its supposed connection to Type Ia supernovae explosions.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Badenes, C., Hughes, J. P., Bravo, E., & Langer, N. 2007, ApJ, 662, 472Google Scholar
Blondin, S., et al., 2009, ApJ, 693, 207Google Scholar
Chiotellis, A., Schure, K. M., & Vink, J. 2011, A&A submitted (arXiv:1103.5487)Google Scholar
Chomiuk, L., Soderberg, A. M., Chevalier, R., Badenes, C., & Fransson, C. 2011, AAS, 21730405CGoogle Scholar
Chugai, N. N. 1986, SvA, 30, 563Google Scholar
Chugai, N. N. 2008, Astronomy Letters, 34, 389Google Scholar
Cox, N., et al., 2011, in preparationGoogle Scholar
Di Stefano, R. 2010a, ApJ, 712, 728Google Scholar
Di Stefano, R. 2010b, ApJ, 719, 474Google Scholar
Fryxell, B. A. & Arnett, W. D. 1981, ApJ, 243, 994CrossRefGoogle Scholar
Gerardy, C. 2004, ApJ, 607, 391Google Scholar
Greggio, L. 2010, MNRAS, 406, 22Google Scholar
Horesh, A., et al., 2011, ApJ, submitted, (arXiv:1109.2912v1)Google Scholar
Kerzendorf, W., et al. 2009, ApJ, 701, 1665Google Scholar
Kerzendorf, W., et al. 2011, ApJ, in preparationGoogle Scholar
Immler, S. I., et al. 2006, ApJ, 648, L119Google Scholar
Leonard, D. C. 2007, ApJ, 670, 1275Google Scholar
Li, W., et al. 2001, Nature, submitted (arXiv:1109.1593)Google Scholar
Livio, M. 2001, in Supernovae and gamma-ray bursts: the greatest explosions since the Big Bang, edited by Livio, M., Panagia, N. and Sahu, K.. STScI symposium series, Vol. 13. Cambridge, UK: Cambridge University Press, p. 334Google Scholar
Livne, E., Tuchman, Y., & Wheeler, J. C. 1992, ApJ, 399, 665Google Scholar
Lundqvist, P., et al. 2003, in From twilight to highlight: the physics of Supernovae, ed. Hillebrandt, W. & Leibundgut, B. (Berlin: Springer), 309Google Scholar
Lundqvist, P., et al. 2005, in Cosmic Explosions, ed. Marcaide, J. M., & Weiler, K. W., CD-ROM version, IAU Coll., 192, 81Google Scholar
Maoz, D. & Mannucci, F. 2008, MNRAS, 388, 421Google Scholar
Marietta, E., Burrows, A., & Fryxell, B. 2000, ApJ, 128, 615Google Scholar
Mattila, S., et al. 2005, A&A, 443, 649Google Scholar
Mazzali, P. A., et al. 2000, A&A, 363, 705Google Scholar
Mazzali, P. A., Benetti, S., Stehle, M.et al. 2005, MNRAS, 357, 200Google Scholar
Meng, X., Chen, X. & Han, Z. 2007, PASJ, 59, 835CrossRefGoogle Scholar
OBrien, T. J., et al. 2006, Nature, 442, 279Google Scholar
Pakmor, R., Röpke, F. K., Weiss, A., & Hillebrandt, W. 2008, A&A, 489, 943Google Scholar
Panagia, N., et al. 2006, ApJ, 469, 396Google Scholar
Patat, F., et al. 2007, Science, 30, 490Google Scholar
Patat, F. 2009, in Probing stellar populations out to the distant universe, AIP Conference Proceedings, Volume 1111, p. 299Google Scholar
Patat, F., Cox, N. L. J., Parrent, J., & Branch, D. 2010, A&A, 514, 78Google Scholar
Patat, F., Chugai, N. N., Podsiadlowski, Ph., Mason, E., Melo, C., & Pasquini, L., 2011a, A&A, 530, 63Google Scholar
Patat, F., et al. 2011, in preparationGoogle Scholar
Pauldrach, A. W., et al. 1996, A&A, 312, 525Google Scholar
Quimby, R., et al. 2006, ApJ, 636, 400Google Scholar
Renzini, A. 2011, public communication, this conference, closing remarksGoogle Scholar
Reynolds, S. P., et al. 2007, ApJ, 688, 135Google Scholar
Ribeiro, V. R. A. M., et al. 2009, ApJ, 703, 1955Google Scholar
Roelofs, G., Bassa, C., Voss, R., & Nelemans, G. 2008, MNRAS, 391, 290CrossRefGoogle Scholar
Ruiz-Lapuente, P., et al. 2004, Nature, 431, 1069Google Scholar
Simon, J., et al. 2009, ApJ, 702, 1157Google Scholar
Simon, J., et al. 2010, private communicationGoogle Scholar
Smartt, S. J. 2009, ARAA, 47, 63Google Scholar
Smartt, S. J. 2011, these proceedingsGoogle Scholar
Sokoloski, J. L., Luna, G. J. M., Mukai, K., & Kenyon, S. J. 2006, Nature, 442, 276CrossRefGoogle Scholar
Sternberg, A., et al. 2011, Science, 333, 856Google Scholar
Stockdale, C. J., et al. 2006, CBET 396Google Scholar
Stritzinger, M., et al. 2010, AJ, 140, 2036Google Scholar
Taam, R. E. & Fryxell, B. A. 1984, ApJ, 279, 166CrossRefGoogle Scholar
Voss, R. & Nelemans, G. 2008, Nature, 451, 802Google Scholar
Wang, L., Baade, D., Höflich, P., et al. 2003, ApJ, 591, 1110Google Scholar
Whelan, J. & Iben, I. 1973, ApJ, 186, 1007Google Scholar
Wheeler, J. C., Lecar, M., & McKee, C. F. 1975, ApJ, 200, 145Google Scholar
Wood-Vasey, W. M. & Sokoloski, J. L. 2006, ApJL, 645, 53Google Scholar
Yoon, S.-C., Podsiadlowski, P., & Rosswog, S. 2007, MNRAS 380, 933Google Scholar