Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-28T16:48:35.031Z Has data issue: false hasContentIssue false

Hydrostatic 12C Burning in CO WDs: the Simmering Phase of SNe Ia Progenitors

Published online by Cambridge University Press:  17 January 2013

Francisco Förster
Affiliation:
Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago, Chile email: francisco.forster@gmail.com
Pierre Lesaffre
Affiliation:
Laboratoire de Radioastronomie, 24 rue Lhomond, 75231 PARIS Cedex 05, France email: pierre.lesaffre@lra.ens.fr
Philipp Podsiadlowski
Affiliation:
University of Oxford, Department of Physics, Oxford, OX1 3RH, UK email: podsi@atro.ox.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Among the possible progenitor scenarios considered for Type Ia supernovae, those that involve a carbon–oxygen white dwarf (CO WD) accreting stably towards the Chandrasekhar mass should undergo a phase of hydrostatic carbon burning under high densities and strong convection: the simmering or carbon–flash phase, which can extend for a few hundred years before explosion. During this phase the progenitor CO WD can burn a small fraction of its carbon hydrostatically, releasing energy and ashes that make the star convective and able to capture electrons from the degenerate plasma. In this work we present simplified pre–supernova evolution models of CO WDs growing towards the Chandrasekhar mass accreting matter stably and evolving through the simmering phase towards ignition in order to explore the effects of different initial masses and cooling times in the final chemical composition of the WD before explosion. Preliminary results show that, as expected, denser systems at the start of the simmering phase undergo stronger neutronization. The amount of neutronization is less than what is found in the one–zone models of Chamulak et al. (2008), about a third, and can vary by about a factor of two depending on the exact path to explosion.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Benetti, S., Cappellaro, E., Mazzali, P. A., et al., 2005, ApJ, 623, 1011Google Scholar
Chamulak, D. A., Brown, E. F., Timmes, F. X., & Dupczak, K., 2008, ApJ, 677, 160Google Scholar
Fesen, R. A., Höflich, P. A., Hamilton, A. J. S., Hammell, M. C., Gerardy, C. L., Khokhlov, A. M., & Wheeler, J. C., 2007, ApJ, 658, 396Google Scholar
Folatelli, G., Phillips, M. M., Morrell, N., et al., 2011, arXiv, arXiv:1110.3789Google Scholar
Förster, F., Lesaffre, P. & Podsiadlowski, Ph., 2010, ApJS, 190, 334Google Scholar
Gerardy, C. L., Meikle, W. P. S., Kotak, R., et al., 2007, ApJ, 661, 995Google Scholar
Hachisu, I., Kato, M., & Nomoto, K., 1996, ApJ, 470, L97Google Scholar
Hachisu, I., Kato, M., & Nomoto, K., 1999, ApJ, 522, 487Google Scholar
Hachisu, I., Kato, M., Nomoto, K., & Umeda, H., 1999, ApJ, 519, 314Google Scholar
Han, Z. & Podsiadlowski, P., 2004, MNRAS, 350, 1301CrossRefGoogle Scholar
Hamuy, M., Phillips, M. M., Suntzeff, N. B., Schommer, R. A., Maza, J., & Aviles, R., 1996, AJ, 112, 2391Google Scholar
Hillebrandt, W. & Niemeyer, J. C., 2000, ARA&A, 38, 191Google Scholar
Iben, I. Jr., 1978, ApJ, 226, 996Google Scholar
Iben, I. Jr., 1982, ApJ, 253, 248Google Scholar
Langer, N., Deutschmann, A., Wellstein, S., & Höflich, P., 2000, A&A, 362, 1046Google Scholar
Lesaffre, P., Podsiadlowski, Ph., & Tout, C. A., 2005, MNRAS, 356, 131CrossRefGoogle Scholar
Lesaffre, P., Han, Z., Tout, C. A., Podsiadlowski, Ph., & Martin, R. G., 2006, MNRAS, 368, 187Google Scholar
Li, X.-D. & van den Heuvel, E. P. J., 1997, A&A, 322, L9Google Scholar
Maeda, K., Benetti, S., Stritzinger, M., et al., 2010, Natur, 466, 82Google Scholar
Maeda, K., Leloudas, G., Taubenberger, S., et al., 2011, MNRAS, 413, 3075Google Scholar
Mazzali, P. A., Cappellaro, E., Danziger, I. J., Turatto, M., & Benetti, S., 1998, ApJ, 499, L49Google Scholar
Mazzali, P. A., Röpke, F. K., Benetti, S., & Hillebrandt, W., 2007, Sci, 315, 825Google Scholar
Meng, X., Chen, X., & Han, Z., 2009, MNRAS, 395, 2103CrossRefGoogle Scholar
Meng, X.-C., Yang, W.-M., & Li, Z.-M., 2010, RAA, 10, 927Google Scholar
Motohara, K., Maeda, K., Gerardy, C. L., et al., 2006, ApJ, 652, L101Google Scholar
Nomoto, K., Thielemann, F.-K., & Yokoi, K., 1984, ApJ, 286, 644CrossRefGoogle Scholar
Nomoto, K., Saio, H., Kato, M., & Hachisu, I., 2007, ApJ, 663, 1269Google Scholar
Pakmor, R., Kromer, M., Röpke, F. K., Sim, S. A., Ruiter, A. J., & Hillebrandt, W., 2010, Natur, 463, 61Google Scholar
Parrent, J. T., Thomas, R. C., Fesen, R. A., et al., 2011, ApJ, 732, 30Google Scholar
Scannapieco, E. & Bildsten, L., 2005, ApJ, 629, L85CrossRefGoogle Scholar
Schwarzschild, M. & Härm, R., 1965, ApJ, 142, 855Google Scholar
Shen, K. J. & Bildsten, L., 2007, ApJ, 660, 1444Google Scholar
Sim, S. A., Röpke, F. K., Hillebrandt, W., Kromer, M., Pakmor, R., Fink, M., Ruiter, A. J., & Seitenzahl, I. R., 2010, ApJ, 714, L52Google Scholar
Stehle, M., Mazzali, P. A., Benetti, S., & Hillebrandt, W., 2005, MNRAS, 360, 1231Google Scholar
Sullivan, M., Conley, A., Howell, D. A., et al., 2010, MNRAS, 406, 782Google Scholar
Timmes, F. X., Brown, E. F., & Truran, J. W., 2003, ApJ, 590, L83Google Scholar
Townsley, D. M., Calder, A. C., Asida, S. M., Seitenzahl, I. R., Peng, F., Vladimirova, N., Lamb, D. Q., & Truran, J. W., 2007, ApJ, 668, 1118Google Scholar
Woosley, S. E., Kasen, D., Blinnikov, S., & Sorokina, E., 2007, ApJ, 662, 487Google Scholar