Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T19:58:40.389Z Has data issue: false hasContentIssue false

The Progenitor of a Type Ia Supernova with a Short Delay Time?

Published online by Cambridge University Press:  17 January 2013

S. Mereghetti
Affiliation:
INAF, IASF-Milano, v. E.Bassini 15, I-20133 Milano, Italy email: sandro@iasf-milano.inaf.it
N. La Palombara
Affiliation:
INAF, IASF-Milano, v. E.Bassini 15, I-20133 Milano, Italy email: sandro@iasf-milano.inaf.it
A. Tiengo
Affiliation:
INAF, IASF-Milano, v. E.Bassini 15, I-20133 Milano, Italy email: sandro@iasf-milano.inaf.it IUSS, v.le Lungo Ticino Sforza 56, I-27100 Pavia, Italy
P. Esposito
Affiliation:
INAF - Osservatorio Astronomico di Cagliari, loc. Poggio dei Pini, strada 54, I-09012 Capoterra, Italy
L. Stella
Affiliation:
INAF - Osservatorio Astronomico di Roma, v. Frascati 33, I-00040 Monteporzio Catone, Italy
G.L. Israel
Affiliation:
INAF - Osservatorio Astronomico di Roma, v. Frascati 33, I-00040 Monteporzio Catone, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

HD 49798/RX J0648.0-4418 is the only known X-ray binary composed of a hot subdwarf and a massive white dwarf (M=1.28 ± 0.05 M). This system, with an orbital period of 1.55 days, is the outcome of a common envelope evolution, most likely of a pair of stars with initial masses of ~8–10M. When the hot subdwarf, currently in a He-burning phase, will expand again and fill its Roche-lobe, the enhanced mass transfer can rapidly bring the already massive white dwarf above the Chandrasekhar limit. The possible final fate, either a Type Ia supernova explosion or an accretion induced collapse, is particularly interesting in view of the high rotational velocity of this star, which has the shortest spin period (13s) observed in a white dwarf.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Davies, R. E., Fabian, A. C., & Pringle, J. E. 1979, MNRAS, 186, 779Google Scholar
Di Stefano, R., Voss, R., & Claeys, J. S. W. 2011, ApJ, 738, L1Google Scholar
Dominguez, I., Straniero, O., Tornambe, A., & Isern, J. 1996, ApJ, 472, 783Google Scholar
Dufton, P. L. 1972, MNRAS, 159, 79Google Scholar
Hamann, W. 2010, Ap&SS, 119Google Scholar
Iben, I. J. & Tutukov, A. V. 1994, ApJ, 431, 264CrossRefGoogle Scholar
Israel, G. L., Stella, L., Angelini, L., et al. 1997, ApJ, 474, L53Google Scholar
Jaschek, M. & Jaschek, C. 1963, PASP, 75, 365Google Scholar
Kato, M. & Hachisu, I. 2004, ApJ, 613, L129Google Scholar
Kudritzki, R. P. & Simon, K. P. 1978, A&A, 70, 653Google Scholar
Livio, M. & Pringle, J. E. 1998, ApJ, 505, 339Google Scholar
Mereghetti, S., Tiengo, A., Esposito, P., et al. 2009, Science, 325, 1222CrossRefGoogle Scholar
Mereghetti, S., La Palombara, N., Tiengo, A., et al. 2011, ApJ, 737, 51Google Scholar
Richter, D. 1971, A&A, 14, 415Google Scholar
Stickland, D. J. & Lloyd, C. 1994, The Observatory, 114, 41Google Scholar
Thackeray, A. D. 1970, MNRAS, 150, 215Google Scholar
Tiengo, A., Mereghetti, S., Israel, G. L., & Stella, L. 2004, Nucl. Phys. B Proc. Suppl., 132, 705Google Scholar
Wang, B. & Han, Z. 2010, Research in Astronomy and Astrophysics, 10, 681Google Scholar