Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-16T05:40:18.566Z Has data issue: false hasContentIssue false

Thermal transport properties of decagonal quasicrystals and their approximants

Published online by Cambridge University Press:  25 January 2013

Petar Popčević
Affiliation:
Institut za fiziku, Bijenička 46, 10000 Zagreb, Croatia
Ante Bilušić
Affiliation:
Institut za fiziku, Bijenička 46, 10000 Zagreb, Croatia Faculty of Science, University of Split, Nikole Tesle 12, 21000 Split, Croatia
Kristijan Velebit
Affiliation:
Institut za fiziku, Bijenička 46, 10000 Zagreb, Croatia
Ana Smontara
Affiliation:
Institut za fiziku, Bijenička 46, 10000 Zagreb, Croatia
Get access

Abstract

Transport properties (thermal conductivity, electrical resistivity and thermopower) of decagonal quasicrystal d-AlCoNi, and approximant phases Y-AlCoNi, o-Al13Co4, m-Al13Fe4, m-Al13(Fe,Ni)4 and T-AlMnFe have been reviewed. Among all presented alloys the stacking direction (periodic for decagonal quasicrystals) is the most conductive one for the charge and heat transport, and the in/out-of-plane anisotropy is much larger than the in-plane anisotropy. There is a strong relationship between periodicity length along stacking direction and anisotropy of transport properties in both quasicrystals and their approximants suggesting a decrease of the anisotropy with increasing number of stacking layers.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Shechtman, D., Blech, I., Gratias, D. and Cahn, J. W., Phys. Rev. Lett. 53, 1951 (1984).10.1103/PhysRevLett.53.1951CrossRefGoogle Scholar
Tsai, A. P., Guo, J. Q., Abe, E., Takakura, H. and Sato, T. J., Nature 408, 537 (2000).10.1038/35046202CrossRefGoogle Scholar
Cao, W., Ye, H. Q. and Kuo, K. H., Phys. Status Solidi A 107, 511 (1988).10.1002/pssa.2211070206CrossRefGoogle Scholar
Steurer, W., Z. Kristallogr. 219, 391 (2004).Google Scholar
Chen, H., Li, D. X. and Kuo, K. H., Phys. Rev. Lett. 60, 1645 (1988).10.1103/PhysRevLett.60.1645CrossRefGoogle Scholar
Gille, P., Dreier, P., Gräber, M. and Scholpp, T., J. Cryst. Growth 207, 95 (1999).10.1016/S0022-0248(99)00348-6CrossRefGoogle Scholar
Dolinšek, J., Komelj, M., Jeglič, P., Vrtnik, S., Stanić, D., Popčević, P., Ivkov, J., Smontara, A., Jagličić, Z., Gille, P. and Grin, Y., Phys. Rev. B 79, 184201 (2009).10.1103/PhysRevB.79.184201CrossRefGoogle Scholar
Lin, S.-Y., Wang, X.-M., Lu, L., Zhang, D.-L., He, L. X. and Kuo, K. X., Phys. Rev. B 41, 9625 (1990).Google Scholar
Zhang, D.-L., Cao, S.-C., Wang, Y.-P., Lu, L., Wang, X.-M., Ma, X. L. and Kuo, K. H., Phys. Rev. Lett. 66, 2778 (1991).Google Scholar
Smontara, A., Smiljanić, I., Ivkov, J., Stanić, D., Barišić, O. S., Jagličić, Z., Gille, P., Komelj, M., Jeglič, P., Bobnar, M. and Dolinšek, J., Phys. Rev. B 78, 104204 (2008).10.1103/PhysRevB.78.104204CrossRefGoogle Scholar
Popčević, P., Smontara, A., Ivkov, J., Wencka, M., Komelj, M., Jeglič, P., Vrtnik, S., Bobnar, M., Jagličić, Z., Bauer, B., Gille, P., Borrmann, H., Burkhardt, U., Grin, Y. and Dolinšek, J., Phys. Rev. B 81, 184203 (2010).10.1103/PhysRevB.81.184203CrossRefGoogle Scholar
Heggen, M., Feuerbacher, M., Ivkov, J., Popčević, P., Batistić, I., Smontara, A., Jagodič, M., Jagličić, Z., Janovec, J., Wencka, M. and Dolinšek, J., Phys. Rev. B 81, 184204 (2010).10.1103/PhysRevB.81.184204CrossRefGoogle Scholar
Bobnar, M., Jeglič, P., Klanjšek, M., Jagličić, Z., Wencka, M., Popčević, P., Ivkov, J., Stanić, D., Smontara, A., Gille, P. and Dolinšek, J., Phys. Rev. B 85, 024205 (2012).10.1103/PhysRevB.85.024205CrossRefGoogle Scholar
Smontara, A., Biljakovic, K., Mazuer, J., Monceau, P. and Levy, F., J. Phys. Condens. Matter 4, 3273 (1992).10.1088/0953-8984/4/12/017CrossRefGoogle Scholar
Smontara, A., Bilušić, A., Bihar, Ž. and Smiljanić, I., in Properties And Applications of Complex Intermetallics, edited by Belin-Ferré, E. (World Scientific, 2009), pp. 113.10.1142/9789814261647_0003CrossRefGoogle Scholar
Smontara, A., Popčević, P., Stanić, D., Velebit, K. and Dolinšek, J., Philos. Mag. 91, 2746 (2010).10.1080/14786435.2010.511595CrossRefGoogle Scholar
Ziman, J. M., Electrons and Phonons: The Theory of Transport Phenomena in Solids. (Oxford University Press, London, 1960), pp. 260.Google Scholar
Markert, J. T., Cobb, J. L., Bruton, W. D., Bhatnagar, A. K., Naugle, D. G. and Kortan, A. R., J. Appl. Phys. 76, 6110 (1994).10.1063/1.358321CrossRefGoogle Scholar
Bianchi, A. D., Bommeli, F., Felder, E., Kenzelmann, M., Chernikov, M. A., Degiorgi, L., Ott, H. R. and Edagawa, K., Phys. Rev. B 58, 3046 (1998).10.1103/PhysRevB.58.3046CrossRefGoogle Scholar
Popčević, P., Stanić, D., Bihar, Ž., Bilušić, A. and Smontara, A., Isr. J. Chem. 51, 1340 (2011).10.1002/ijch.201100150CrossRefGoogle Scholar
Chernikov, M. A., Ott, H. R., Bianchi, A., Migliori, A. and Darling, T. W., Phys. Rev. Lett. 80, 321 (1998).10.1103/PhysRevLett.80.321CrossRefGoogle Scholar