Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-29T05:41:14.286Z Has data issue: false hasContentIssue false

Synthesis of ZnO at Different Atomic Proportion Produced by Chemical Precipitation

Published online by Cambridge University Press:  03 January 2013

A. Medina
Affiliation:
UMSNH, Instituto de Investigaciones Metalúrgicas, Edificio U Ciudad Universitaria, C.P. 58040, Morelia, Michoacán, México SEP-DGEST-IT de Tlalnepantla, Av. Tecnológico s/n, Col. la Comunidad, Tlalnepantla de Baz, Edo México, 54070, México.
L. Béjar
Affiliation:
UMSNH, Facultad de Ingeniería Mecánica, Edificio W Ciudad Universitaria, C.P. 58040, Morelia, Michoacán, México
G. Herrera-Pérez
Affiliation:
Departamento de Ingeniería en Materiales, Instituto Tecnológico Superior de Irapuato (ITESI) Carretera Irapuato-Silao Km. 12.5, El Copal, Irapuato, Guanajuato. C.P. 36821, México
Get access

Abstract

Zinc oxide (ZnO) nanoparticles were produced using chemical precipitation synthesis with a molar ratio of 1:1, 1:2 and 1:3. The structure, chemical composition and morphology were investigated by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). XRD and EDS demonstrated that the all particles formed at different atomic proportion were of wurtzite crystal structure with the same chemical composition. SEM and TEM showed the formation of hexagonal particles with a molar ratio of 1:1 while the samples synthesized with a molar ratio 1:2 and 1:3 showed a circular shape. HRTEM and Fast Fourier Transform (FFT) demonstrated that the all particles were formed with a preferable [0001] growth direction.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Zhang, Q., Chou, T. P., Russo, B., Jenekhe, S. A., Angew, G.. Chem., Int. Ed. 47, 2402 (2008).Google Scholar
Baxter, J. B., Walker, A. M., van Ommering, K., Aydil, E. S., Nanotechnology, 17, S304 (2006).CrossRefGoogle Scholar
Xiang, B., Wang, P., Zhang, X., Dayeh, S. A., Aplin, D. P. R., Soci, C., Yu, D., Wang, D., Nano Lett., 7, 323 (2007).CrossRefGoogle Scholar
Wang, Z. L., ACS Nano, 2, 1987 (2008).CrossRefGoogle Scholar
Wan, Q., Li, Q. H., Chen, Y. J., Wang, T. H., He, X. L., Li, J. P., Lin, C. L., Appl. Phys. Lett. 84, 3654 (2004).CrossRefGoogle Scholar
Li, C. C., Du, Z. F., Li, L. M., Yu, H. C., Wan, Q., Wang, T. H., Appl. Phys. Lett. 91, 032101 (2007)CrossRefGoogle Scholar
Lin, Y. F., Jian, W. B., Nano Lett. 8, 3146 (2008).CrossRefGoogle Scholar
Zhou, J., Fei, P., Gao, Y., Gu, Y., Liu, J., Bao, G., Wang, Z. L., Nano Lett. 8, 2725 (2008).CrossRefGoogle Scholar
Hanley, C., Laynel, J., Punnoose, A., Reddy, K. M., Coombs, I., Coombs, A., Feris, K., Wingett, D., Nanotech. 19, 295 (2008).CrossRefGoogle Scholar
Khorsand, A., Razali, R., Majid, W. H. A., Darroudi, M., Int. J. Nanomed. 6, 1399 (2011).CrossRefGoogle Scholar
Wang, L. and Muhammed, M.. J. of Mat. Chem. 9, 2871 (1999).CrossRefGoogle Scholar
Yamabi, S., Imai, H., J. of Mater. Chem. 12, 3773 (2002).CrossRefGoogle Scholar