Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T15:08:22.783Z Has data issue: false hasContentIssue false

ON THE DIOPHANTINE PROPERTIES OF λ-EXPANSIONS

Published online by Cambridge University Press:  05 December 2012

Tomas Persson
Affiliation:
Centre for Mathematical Sciences, Lund University, Box 118, 22100 Lund, Sweden (email: tomasp@maths.lth.se)
Henry W. J. Reeve
Affiliation:
Department of Mathematics, The University of Bristol, University Walk, Clifton, Bristol, BS8 1TW, U.K. (email: henrywjreeve@gmail.com)
Get access

Abstract

For and α, we consider sets of numbers x such that for infinitely many n, x is 2αn-close to some ∑ ni=1ωiλi, where ωi∈{0,1}. These sets are in Falconer’s intersection classes for Hausdorff dimension s for some s such that −(1/α)(log λ /log   2 )≤s≤1/α. We show that for almost all , the upper bound of s is optimal, but for a countable infinity of values of λ the lower bound is the best possible result.

Type
Research Article
Copyright
Copyright © University College London 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Besicovitch, A., Sets of fractional dimension (IV): on rational approximation to real numbers. J. Lond. Math. Soc. 9 (1934), 126131.CrossRefGoogle Scholar
[2]Dirichlet, L. G. P., Verallgemeinerung eines Satzes aus der Lehre von den Kettenbrüchen nebst einigen Anwendungen auf die Theorie der Zahlen. S. B. Preuss. Akad. Wiss (1842), 9395.Google Scholar
[3]Erdős, P., On a family of symmetric Bernoulli convolutions. Amer. J. Math. 61 (1939), 974976.CrossRefGoogle Scholar
[4]Falconer, K., Classes of sets with large intersections. Mathematika 32 (1985), 191205.CrossRefGoogle Scholar
[5]Falconer, K., Sets with large intersection properties. J. Lond. Math. Soc. 49 (1994), 267280.CrossRefGoogle Scholar
[6]Falconer, K., Fractal Geometry. Mathematical Foundations and Applications, 2nd edn, John Wiley & Sons (Hoboken, 2003).CrossRefGoogle Scholar
[7]Färm, D. and Persson, T., Dimension and measure of baker-like skew-products of β-transformations. Discrete Contin. Dyn. Syst. Ser. A 32 (2012), 35253537.CrossRefGoogle Scholar
[8]Färm, D., Persson, T. and Schmeling, J., Dimension of countable intersections of some sets arising in expansions in non-integer bases. Fund. Math. 209 (2010), 157176.CrossRefGoogle Scholar
[9]Jarník, V., Diophantischen approximationen und hausdorffsches mass. Mat. Sb. 36 (1929), 371382; http://mi.mathnet.ru/eng/msb/v36/i3/p371.Google Scholar
[10]Parry, W., On the β-expansion of real numbers. Acta Math. Acad. Sci. Hunga. 11 (1960), 401416.CrossRefGoogle Scholar
[11]Pesin, Y., Dimension Theory in Dynamical Systems: Contemporary Views and Applications (Chicago Lectures in Mathematics), University of Chicago Press (Chicago, IL, 1997).CrossRefGoogle Scholar
[12]Pollicott, M. and Simon, K., The Hausdorff dimension of expansions with deleted digits. Trans. Amer. Math. Soc. 347 (1995), 967983.Google Scholar
[13]Rams, M., Packing dimension estimation for exceptional parameters. Israel J. Math. 130 (2002), 125144.CrossRefGoogle Scholar
[14]Shmerkin, P. and Solomyak, B., Zeros of {−1,0,1} power series and connectedness loci for self-affine sets. Exp. Math. 15(4) (2006), 499511.CrossRefGoogle Scholar
[15]Simon, K. and Solomyak, B., On the dimension of self-similar sets. Fractals 10(1) (2002), 5965.CrossRefGoogle Scholar
[16]Solomyak, B., On the random series ∑ ±λ n (an Erdős problem). Ann. of Math. (2) 142(3) (1995), 611625.CrossRefGoogle Scholar