Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-28T20:01:05.069Z Has data issue: false hasContentIssue false

Optoelectronic Properties of InAlN/GaN Distributed Bragg Reflector Heterostructure Examined by Valence Electron Energy Loss Spectroscopy

Published online by Cambridge University Press:  12 October 2012

A. Eljarrat*
Affiliation:
Laboratory of Electron NanoScopies, LENS-MIND-IN2UB, Dept. Electrónica, Universitat de Barcelona, Marti i Franqués 1, Barcelona, Spain
S. Estradé
Affiliation:
Laboratory of Electron NanoScopies, LENS-MIND-IN2UB, Dept. Electrónica, Universitat de Barcelona, Marti i Franqués 1, Barcelona, Spain TEM-MAT, (CCiT), Universitat de Barcelona, Solís i Sabarís 1, Barcelona, Spain
Ž. Gačević
Affiliation:
ISOM, Instituto de Sistemas Optoelectrónicos y Microtecnología, Universidad Politécnica de Madrid, Spain
S. Fernández-Garrido
Affiliation:
ISOM, Instituto de Sistemas Optoelectrónicos y Microtecnología, Universidad Politécnica de Madrid, Spain Paul-Drude-Institute for Solid State Electronics, Hausvogteiplatz, 5-10117 Berlin, Germany
E. Calleja
Affiliation:
ISOM, Instituto de Sistemas Optoelectrónicos y Microtecnología, Universidad Politécnica de Madrid, Spain
C. Magén
Affiliation:
Instituto de Nanociencia de Aragón (INA) and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50018 Zaragoza, Spain. Fundación ARAID, 50018 Zaragoza, Spain
F. Peiró
Affiliation:
Laboratory of Electron NanoScopies, LENS-MIND-IN2UB, Dept. Electrónica, Universitat de Barcelona, Marti i Franqués 1, Barcelona, Spain
*
*Corresponding author. E-mail: aeljarrat@el.ub.edu
Get access

Abstract

High-resolution monochromated electron energy loss spectroscopy (EELS) at subnanometric spatial resolution and <200 meV energy resolution has been used to assess the valence band properties of a distributed Bragg reflector multilayer heterostructure composed of InAlN lattice matched to GaN. This work thoroughly presents the collection of methods and computational tools put together for this task. Among these are zero-loss-peak subtraction and nonlinear fitting tools, and theoretical modeling of the electron scattering distribution. EELS analysis allows retrieval of a great amount of information: indium concentration in the InAlN layers is monitored through the local plasmon energy position and calculated using a bowing parameter version of Vegard Law. Also a dielectric characterization of the InAlN and GaN layers has been performed through Kramers-Kronig analysis of the Valence-EELS data, allowing band gap energy to be measured and an insight on the polytypism of the GaN layers.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amari, H., Zhang, H.Y., Geelhaar, L., Cheze, C., Kappers, M.J. & Walther, T. (2011). Nanoscale EELS analysis of elemental distribution and band-gap properties in AlGaN epitaxial layers. In 17th International Conference on Microscopy of Semiconducting Materials 2011, J Phys Conf Series, 326, 012039012045.Google Scholar
Arbiol, J., Estradé, S., Prades, J., Cirera, A., Furtmayer, F., Stark, C., Laufer, A., Stutzmann, M., Eickhoff, M., Gass, M.H., Bleloch, A.L., Peiró, F. & Morante, J.R. (2009). Triple-twin domains in Mg doped GaN wurtzite nanowires: Structural and electronic properties of this zinc-blende-like stacking. Nanotechnology 20, 145704145713.Google Scholar
Batson, P.E. (2005). Challenges and opportunities of Angstrom-level analysis. In Microscopy of Semiconducting Materials, Springer Proc Phys 107, 451458.CrossRefGoogle Scholar
Bethe, H. (1930). The theory of the passage of rapid neutron radiation through matter. Ann Phys (Leipzig) 5, 325400.CrossRefGoogle Scholar
Brockt, G. & Lakner, H. (2000). Nanoscale EELS analysis of dielectric function and bandgap properties in GaN and related materials. Micron 31, 435440.Google Scholar
Carlin, J.F. & Ilegems, M. (2003). High-quality AlInN for high index contrast Bragg mirrors lattice matched to GaN. Appl Phys Lett 83, 668671.Google Scholar
Dasgupta, S., Nidhi, Choi, S., Wu, F., Speck, J.S. & Mishra, U.K. (2011). Growth, structural, and electrical characterizations of N-polar InAlN by plasma-assisted molecular beam epitaxy. Appl Phys Express 4, 045502045505.Google Scholar
Dorsaz, J., Carlin, J.F., Zellweger, C.M., Gradecak, S. & Ilegems, M. (2004). InGaN/GaN resonant-cavity LED including an AlInN/GaN Bragg mirror. Phys Stat Sol 201, 26752678.Google Scholar
Dridi, Z., Bouhafs, B. & Ruterana, P. (2003). First-principles investigation of lattice constants and bowing parameters in wurtzite AlxGa1-xN, InxGa1-xN and InxAl1-xN alloys. Semicond Sci Tech 18, 850856.Google Scholar
Egerton, R.F. (1996). EELS in the Electron Microscope. New York: Plenum Press.Google Scholar
Egerton, R.F. (2009). Electron energy-loss spectroscopy in the TEM. Rep Mod Phys 72, 016502016527.Google Scholar
Erni, R. & Browning, N.D. (2005). Valence electron energy-loss spectroscopy in monochromated scanning transmission electron microscopy. Ultramicroscopy 104, 176192.Google Scholar
Erni, R. & Browning, N.D. (2006). Local indium segregation and bang gap variations in high efficiency green light emitting InGaN/GaN diodes. Sol State Comm 137, 230234.Google Scholar
Erni, R. & Browning, N.D. (2007). Quantification of the size-dependent energy gap of individual CdSe quantum dots by valence electron energy-loss spectroscopy. Ultramicroscopy 107, 267273.Google Scholar
Erni, R. & Browning, N.D. (2008). Prospects for analyzing the electronic properties in nanoscale systems by VEELS. Ultramicroscopy 108, 8499.CrossRefGoogle ScholarPubMed
Erni, R., Lazar, S. & Browning, N.D. (2008). The impact of surface and retardation losses on valence electron energy-loss spectroscopy. Ultramicroscopy 108, 207224.Google Scholar
Feltin, E., Butté, R., Carlin, J.F., Dorsaz, J., Grandjean, N. & Ilegems, M. (2005). Lattice-matched distributed Bragg reflectors for nitride-based vertical cavity surface emitting lasers. Electron Lett 41, 9495.Google Scholar
Feltin, E., Christmann, G., Dorsaz, J., Castiglia, A., Carlin, J.-F., Butté, R., Grandjean, N., Christopoulos, S., von Högersthal, G.B.H., Grundy, A.J.D., Lagoudakis, P.G. & Baumberg, J.J. (2007). Blue lasing at room temperature in an optically pumped lattice-matched AlInN/GaN VCSEL structure. Electron Lett 43, 924926.Google Scholar
Fernández-Garrido, S., Gačević, Ž. & Calleja, E. (2008). A comprehensive diagram to grow InAlN alloys by plasma-assisted molecular beam epitaxy. Appl Phys Lett 93, 191907191910.CrossRefGoogle Scholar
Gačević, Ž., Fernández-Garrido, S., Calleja, E., Luna, E. & Trampert, A. (2009). Growth and characterization of lattice-matched InAlN/GaN Bragg reflectors grown by plasma-assisted molecular beam epitaxy. Phys Stat Sol C 6, S6435645.Google Scholar
Gačević, Ž., Fernández-Garrido, S., Hosseini, D., Estradé, S., Peiró, F. & Calleja, E. (2010). InAlN/GaN Bragg reflectors grown by plasma-assisted molecular beam epitaxy. J Appl Phys 108, 113117113124.Google Scholar
Gorczyca, I., Suski, T., Christensen, N.E. & Svane, A. (2010). In-clustering induced anomalous behavior of band gap in InAlN and InGaN. Phys Stat Sol C 7, 12831286.Google Scholar
Ikeda, M. & Uchida, S. (2002). Blue-violet laser diodes suitable for Blu-ray disk. Phys Stat Sol 194, 407413.Google Scholar
Iliopoulos, E., Adikimenakis, A., Giesen, C., Heuken, M. & Georgakilas, A. (2007). Energy bandgap bowing of InAlN alloys studied by spectroscopic ellipsometry. Appl Phys Lett 92, 191907191910.Google Scholar
Ive, T., Brandt, O., Kong, X., Trampert, A. & Ploog, K.H. (2008). (Al,In)N layers and (Al,In)N/GaN heterostructures grown by plasma-assisted molecular beam epitaxy on 6H-SiC(0001). Phys Rev B 78, 035311035320.Google Scholar
Jeganathan, K., Shimizu, M., Okumura, H., Yano, Y. & Akutsu, N. (2007). Lattice-matched InAlN/GaN two-dimensional electron gas with high mobility and sheet carrier density by plasma-assisted molecular beam epitaxy. J Cryst Growth 304, 342345.Google Scholar
Johnson, D.W. (1975). Fourier series method for numerical Kramers-Kronig analysis. J Phys A 8, 490495.Google Scholar
Kariya, M., Nitta, S., Yamaguchi, S., Amano, H. & Akasaki, I. (1999). Structural properties of InN on GaN grown by metalorganic vapor-phase epitaxy. J Appl Phys 38, L984L986.Google Scholar
Katzer, D.S., Storm, D.F., Binari, S.C., Shanabrook, B.V., Torabi, A., Zhou, L. & Smith, D.J. (2005). Molecular beam epitaxy of InAlN/GaN heterostructures for high electron mobility transistors. J Vac Sci Tech B 23, 12041208.Google Scholar
Kröger, E. (1968). Calculations of energy losses of fast electrons in thin foils with retardation. Z Phys 216, 115135.Google Scholar
Kuzmik, J., Javorka, P., Alam, A., Marso, M., Heuken, M. & Kordos, P. (2002). Annealing of Schottky contacts deposited on dry etched AlGaN/GaN. Semicond Sci Tech 17, L76L78.Google Scholar
Lazar, S., Botton, G.A., Wu, M.-Y., Tichelaar, F.D. & Zandbergen, H.W. (2003). Materials science applications of HREELS in near edge structure analysis and low-energy loss spectroscopy. Ultramicroscopy 96, 535546.Google Scholar
Matsuoka, T. (1997). Calculation of unstable mixing region in wurtzite In1-x-yGaxAlyN. Appl Phys Lett 71, 105107.Google Scholar
Nakamura, S. & Fasol, G. (1997). The Blue Laser Diode. Berlin: Springer.Google Scholar
Palisaitis, J., Hsiao, C.-L., Junai, M., Xie, M., Darakchieva, V., Carlin, J.F., Birch, N.G.J., Hultman, L. & Persson, P.O.A. (2011). Standard-free composition measurements of Al(x)In(1-x)N by low-loss electron energy loss spectroscopy. Phys Stat Sol RRL 5, 5052.Google Scholar
Potapov, P.L., Engelmann, H.-J., Zschech, E. & Stöger-Pollach, M. (2009). Measuring the dielectric constant of materials from valence EELS. Micron 40, 262268.Google Scholar
Rafferty, B. & Brown, L.M. (1998). Direct and indirect transitions in the region of the band gap using electron-energy-loss spectroscopy. Phys Rev B 58, 1032610337.Google Scholar
Rafferty, B., Pennycook, S.J. & Brown, L.M. (2000). Zero loss peak deconvolution for bandgap EEL spectra. J Electron Microsc 49, 517524.CrossRefGoogle ScholarPubMed
Sánchez-López, J.C., Contreras, L., Fernández, A., González-Elipe, A.R., Martín, J.M. & Vacher, B. (1998). AlN thin films prepared by ion beam induced chemical vapour deposition. Thin Solid Films 317, 100104.Google Scholar
Schmult, S., Siegrist, T., Sergent, S.M., Manfra, M.J. & Molnar, R.J. (2007). Optimized growth of lattice-matched InxAl1-xN/GaN heterostructures by molecular beam epitaxy. Appl Phys Lett 90, 021922021925.Google Scholar
Specht, P., Ho, J.C., Xu, X., Armitage, R., Weber, E.R., Erni, E. & Kisielowski, C. (2006). Zincblende and wurtzite phases in InN epilayers and their respective band transitions. J Cryst Growth 288, 225229.Google Scholar
Stöger-Pollach, M. (2008). Optical properties and bandgaps from low loss EELS: Pitfalls and solutions. Micron 39, 10921110.Google Scholar
Terauchi, M., Kuzuo, R., Satoh, F., Tanaka, M., Tsuno, K. & Ohyama, J. (1991). Performance of a new high resolution electron energy loss spectroscopy microscope. Microsc Microanal Microstruc 2, 351355.CrossRefGoogle Scholar
Vilalta-Clemente, A., Poisson, M.A., Behmenburg, H., Giesen, C., Heuken, M. & Ruterana, P. (2010). The structure of InAlN/GaN heterostructures for high electron mobility transistors. Phys Stat Sol 207, 11051108.Google Scholar
Walther, T., Quandt, E., Stegmann, H., Thesen, A. & Benner, G. (2006). First experimental test of a new monochromated and aberration-corrected 200 kV field-emission scanning transmission electron microscope. Ultramicroscopy 106, 963969.Google Scholar
Walther, T. & Stegmann, H. (2006). Preliminary results from the first monochromated and aberration corrected 200-kV field-emission scanning transmission electron microscope. Microsc Microanal 12, 498505.CrossRefGoogle ScholarPubMed