Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T00:39:26.282Z Has data issue: false hasContentIssue false

Correlation Between Quantum Conductance and Atomic Arrangement of Silver Atomic-Size Nanocontacts

Published online by Cambridge University Press:  31 October 2012

Pedro A. Autreto
Affiliation:
Instituto de Física “Gleb Wataghin, Universidade Estadual de Campinas, Campinas - SP, 13083-970, Brazil
Maureen J. Lagos
Affiliation:
Instituto de Física “Gleb Wataghin, Universidade Estadual de Campinas, Campinas - SP, 13083-970, Brazil Laboratório Nacional de Luz Síncroton, Caixa Posta 6192, Campinas – SP, 13084-971 Brazil
Daniel Ugarte
Affiliation:
Instituto de Física “Gleb Wataghin, Universidade Estadual de Campinas, Campinas - SP, 13083-970, Brazil
Douglas S. Galvao
Affiliation:
Instituto de Física “Gleb Wataghin, Universidade Estadual de Campinas, Campinas - SP, 13083-970, Brazil
Get access

Abstract

In this work we have studied the importance of thermal effects on the structural and transport properties of Ag atomic-size nanowires (NWs) generated by mechanical stretching. Our study involve time-resolved atomic high resolution transmission electron microscopy imaging and quantum conductance measurement using an ultra-high-vacuum mechanically controllable break junction combined with quantum transport calculations. We have observed drastic changes in conductance and structural properties of Ag NWs generated at different temperatures (150 and 300 K). By combining electron microscopy images, electronic transport measurements and theoretical modeling, we have been able to establish a consistent correlation between the conductance and structural properties of Ag NWs. In particular, our study has revealed the formation of metastable rectangular rod-like Ag wires along the [001] crystallographic direction.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lagos, M. J., Sato, F., Bettini, J., Rodrigues, V., Galvao, D. S., and Ugarte, D., Nature Nanotechnology 4, 149 (2009).CrossRefGoogle Scholar
Lagos, M. J., Sato, F., Autreto, P. A. S., Galvão, D. S., Rodrigues, V., and Ugarte, D., Nanotechnology 21, 485702 (2009).CrossRefGoogle Scholar
Autreto, P. A. S., Lagos, M. J., Sato, F., Bettini, J., Rocha, A. R., Rodrigues, V., Ugarte, D., and Galvao, D. S., Phys. Rev. Lett. 106, 065501 (2011).CrossRefGoogle Scholar
Krans, J. M., van Ruitenbeek, J. M., Fisun, V. V., Yanson, I. K., and de Jongh, L. J., Nature 375, 767 (1995).CrossRefGoogle Scholar
Rodrigues, V., Fuhrer, T., and Ugarte, D., Phys. Rev. Lett. 85, 4124 (2000).CrossRefGoogle Scholar
Muller, C. J., van Ruitenbeek, J. M., de Jongh, L. J., Physica 191C, 485 (1992).CrossRefGoogle Scholar
Ohnishi, H., Kondo, Y., and Takayanagi, K., Nature 395, 780 (1998).CrossRefGoogle Scholar
Lagos, M. J., Sato, F., Galvao, D. S., and Ugarte, D., Phys. Rev. Lett. 106, 55501 (2011).CrossRefGoogle Scholar
Bratkovsky, A., Sutton, A., and Todorov, T., Phys. Rev. B 52, 5036 (1995).CrossRefGoogle Scholar
Foiles, S., Baskes, M., and Daw, M., Phys. Rev. B 33, 7983 (1983).CrossRefGoogle Scholar
Kondo, Y. and Takayangi, K., Phys. Rev. Lett. 79, 3455 (1997).CrossRefGoogle Scholar
Emberly, E. and Kirczenow, G., Phys. Rev. B 60, 6028 (1999).CrossRefGoogle Scholar
Rego, L. G. C., Rocha, A. R., Rodrigues, V., and Ugarte, D., Phys. Rev. B 67, 045412 (2003).CrossRefGoogle Scholar
González, J. C., Rodrigues, V., Bettini, J., Rego, L. G. C., Rocha, A. R., Coura, P. Z., Dantas, S. O., Sato, F., Galvao, D. S., and Ugarte, D., Phys. Rev. Lett. 93, 126103 (2004).CrossRefGoogle Scholar
Wang, Z. L. (Editor), Nanowires and Nanobelts: Materials, Properties and Devices: Volume 1: Metal and Semiconductor Nanowires (Spring, New York, 2005)).Google Scholar
Agrait, N., Yeyati, A., and Van Ruitenbeek, J., Phys. Rep. 377, 81 (2003).CrossRefGoogle Scholar
Lagos, M. J., Autreto, P. A. S., Galvao, D. S., and Ugarte, D., J. Appl. Phys. 111, 124316 (2012).CrossRefGoogle Scholar