Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-28T11:37:29.727Z Has data issue: false hasContentIssue false

Testing and evaluation of thermal-barrier coatings

Published online by Cambridge University Press:  09 October 2012

Robert Vaßen
Affiliation:
Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, Germany; r.vassen@fz-juelich.de
Yutaka Kagawa
Affiliation:
Research Center for Advanced Science and Technology, The University of Tokyo, Japan; kagawa@rcast.u-tokyo.ac.jp
Ramesh Subramanian
Affiliation:
Siemens Energy Inc., Orlando, FL; Ramesh.Subramanian@siemens.com
Paul Zombo
Affiliation:
Engine and Component Diagnostics, Siemens Energy Inc., Orlando, FL; Paul.Zombo@siemens.com
Dongming Zhu
Affiliation:
Durability and Protective Coatings Branch, Structures and Materials Division, NASA Glenn Research Center, Cleveland, OH; dongming.zhu@nasa.gov
Get access

Abstract

Thermal-barrier coatings are complex systems with properties that largely depend on their specific microstructure. Their properties change during operation, typically leading to degradation. A further difficulty arises from the fact that this degradation also depends on specific loading conditions that can be rather complex. Different laboratory setups are described that simulate, at least partially, the actual loading conditions. In addition, sensing and nondestructive methods are described that are targeted toward reliable operation of a gas-turbine engine with thermal-barrier coated components.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zhu, D., Miller, R.A., Surf. Coat. Technol. 108109, 114 (1998).CrossRefGoogle Scholar
Yu, F., Bennett, T.D., J. Appl. Phys. 98, 103501 (2005).CrossRefGoogle Scholar
Schlichting, K.W., Vaidyanathan, K., Sohn, Y.H., Jordan, E.H., Gell, M., Padture, N.P., Mater. Sci. Eng., A 291, 68 (2000).CrossRefGoogle Scholar
Heyes, A.L., Feist, J.P., Chen, X., Mutasim, Z., Nicholls, J.R., J. Eng. Gas Turbines Power 130, 061301 (2008).CrossRefGoogle Scholar
Song, S., Xiao, P., Mater. Sci. Eng., B 97, 46 (2003).CrossRefGoogle Scholar
Renusch, D., Schütze, M., Surf. Coat. Technol. 202, 740 (2007).CrossRefGoogle Scholar
Bison, P.G., Marinetti, S., Grinzato, E., Vavilov, V.P., Cernuschi, F., Robba, D., Proc. SPIE 5073, 318 (2003).CrossRefGoogle Scholar
Mercer, C., Williams, J.R., Clarke, D.R., Evans, A.G., Proc. R. Soc. London, Ser. A 463, 1393 (2007).Google Scholar
Malzbender, J., Wakui, T., Wessel, E., Steinbrech, R.W., Fract. Mech. Ceram. 14, 435 (2005).Google Scholar
Dononue, M., Philips, N.R., Begley, M.R., Levi, C.G., Acta Mater. (2012), in press.Google Scholar
Vaßen, R., Czech, N., Malléner, W., Stamm, W., Stöver, D., Surf. Coat. Technol. 141, 135 (2001).CrossRefGoogle Scholar
Zhu, D., Miller, R.A., J. Mater. Res. 14, 146 (1999).CrossRefGoogle Scholar
Zhu, D., Miller, R. A., Surf. Coat. Technol. 94, 94 (1997).CrossRefGoogle Scholar
Traeger, F., Vaßen, R., Rauwald, K.-H., Stöver, D., Adv. Eng. Mater. 5, 429 (2003).CrossRefGoogle Scholar
Steinke, T., Sebold, D., Mack, D.E., Vaßen, R., Stöver, D., Surf. Coat. Technol. 205, 2287 (2010).CrossRefGoogle Scholar
Zhu, D., Miller, R.A., J. Therm. Spray Technol. 9, 175 (2000).CrossRefGoogle Scholar
Zhu, D., Miller, R.A., Nagaraj, B.A., Bruce, R.W., Surf. Coat. Technol. 138, 1 (2001).CrossRefGoogle Scholar
Zhu, D., Miller, R.A., MRS Bull. 27, 43 (2000).CrossRefGoogle Scholar
Zhu, D., Choi, S.R., Miller, R.A., Surf. Coat. Technol. 188189, 146 (2004).CrossRefGoogle Scholar
Baufeld, B., Tzimas, E., Mullejans, H., Peteves, S., Bressers, J., Stamm, W., Mater. Sci. Eng., A 315, 231 (2001).CrossRefGoogle Scholar
Peichl, A., Beck, T., Vohringer, O., Surf. Coat. Technol. 162, 113 (2003).CrossRefGoogle Scholar
Tzimas, E., Mullejans, H., Peteves, S.D., Bressers, J., Stamm, W., Acta Mater. 48, 4699 (2000).CrossRefGoogle Scholar
Wright, P.K., Mater. Sci. Eng., A 245, 191 (1998).CrossRefGoogle Scholar
Kitazawa, R., PhD Thesis, The University of Tokyo (2012).Google Scholar
Kitazawa, R., Tanaka, M., Kagawa, Y., Liu, Y.F., Mater. Sci. Eng., B 173, 130 (2010).CrossRefGoogle Scholar
Tanaka, M., Mercer, C., Kagawa, Y., Evans, A.G., J. Am. Ceram. Soc. 94, 128 (2011).CrossRefGoogle Scholar
Tanaka, M., Liu, Y.F., Kim, S.S., Kagawa, Y., J. Mater. Res. 23, 2382 (2008).CrossRefGoogle Scholar
Balint, D.S., Kim, S.-S., Liu, Y.-F., Kitazawa, R., Kagawa, Y., Evans, A.G., Acta. Mater. 59, 5524 (2011).CrossRefGoogle Scholar
Gentleman, M.M., Eldridge, J.I., Zhu, D.M., Murphy, K.S., Clarke, D.R., Surf. Coat. Technol. 201, 3937 (2006).CrossRefGoogle Scholar
Chambers, M.D., Clarke, D.R., Annu. Rev. Mater. Res. 39, 325 (2009).CrossRefGoogle Scholar
Rabhiou, A., Feist, J., Kempf, A., Skinner, S., Heyes, A., Sens. Actuators, A 169, 18 (2011).CrossRefGoogle Scholar
Eldridge, J.I., Zhu, D., Wolfe, D.E., Ceram. Eng. Sci. Proc. 32, 3 (2011).Google Scholar
Gentleman, M.M., PhD thesis, University of California, Santa Barbara (2007).Google Scholar
Eldridge, J.I., Spuckler, C.M., Martin, R.E., Intl. J. Appl. Ceram. Technol. 3, 94 (2006).CrossRefGoogle Scholar
Han, X., Loggins, V., Zeng, Z., Favro, L.D., Thomas, R.L., Appl. Phys. Lett. 85, 1332 (2004).CrossRefGoogle Scholar
Homma, C., Rothenfusser, M., Baumann, J., Shannon, R., Proc. Rev. Prog. Quantum NDE, AIP, 820, 566 (2006).Google Scholar
Rothenfusser, M., Homma, C., Proc. Rev. Prog. Quantum NDE, AIP, 760, 624 (2005).Google Scholar