Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T02:46:24.051Z Has data issue: false hasContentIssue false

Novel device for implementation of WDM in the visible spectrum

Published online by Cambridge University Press:  04 September 2012

P. Louro
Affiliation:
Electronics Telecommunications and Computer Dept, ISEL, Lisbon, Portugal. CTS-UNINOVA, Lisbon, Portugal.
M. Vieira
Affiliation:
Electronics Telecommunications and Computer Dept, ISEL, Lisbon, Portugal. CTS-UNINOVA, Lisbon, Portugal. DEE-FCT-UNL, Quinta da Torre, Monte da Caparica, 2829-516, Caparica, Portugal
M. A. Vieira
Affiliation:
Electronics Telecommunications and Computer Dept, ISEL, Lisbon, Portugal. CTS-UNINOVA, Lisbon, Portugal.
V. Silva
Affiliation:
Electronics Telecommunications and Computer Dept, ISEL, Lisbon, Portugal. CTS-UNINOVA, Lisbon, Portugal.
A. Fantoni
Affiliation:
Electronics Telecommunications and Computer Dept, ISEL, Lisbon, Portugal. CTS-UNINOVA, Lisbon, Portugal.
Get access

Abstract

In this paper we report the use of a device based on two multilayered a-SiC:H/a-Si:H stacked heterostructures to photodetect and demultiplex optical signals of the visible spectrum. Both heterostructures were optimized for the detection of short and long wavelengths within the visible range. The optoelectronic characterization of the device includes spectral response measurements under reverse bias and using different optical steady state light conditions to soak the device. Results show that the device photocurrent signal measured using appropriate steady state optical bias, allows the separate detection of the input transmitted signals which enables the demultiplexing task. A numerical simulation, gives insight into the transduction mechanism to explain the device wavelength selective behavior.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bas, M., Fiber Optics Handbook, Fiber, Dev. and Syst. for Opt. Comm., Chap, 13, Mc Graw-Hill, 2002.Google Scholar
2. Vieira, M., Fernandes, M., Louro, P., Fantoni, A., Vygranenko, Y., Lavareda, G., Nunes de Carvalho, C., Mat. Res. Soc. Symp. Proc., Vol. 862 (2005) A13.4.Google Scholar
3. Vieira, M., Fantoni, A., Fernandes, M., Louro, P., Lavareda, G., Carvalho, C.N., Nanosci, J.. Nanotechn., 9(7), (2009) 40224027. DOI: 10.1166/jnn.2009.M05.Google Scholar
4. Louro, P., Fantoni, A., Fernandes, M., Maçarico, A., Schwarz, R., Vieira, M., J. Non Cryst. Solids, 338-340 (2004) 345348. DOI: 10.1016/j.jnoncrysol.2004.02.070.Google Scholar
5. Vieira, M., Louro, P., Vieira, M. A., Fernandes, M., Costa, J., Fantoni, A., and Barata, M. A., Phys. Status Solidi C 7, No. 3–4, 11841187 (2010) / DOI: 10.1002/pssc.200982700.Google Scholar
6. Louro, P., Vieira, M. A., Vieira, M., Costa, J., Fernandes, M., Sensor Dev. Techn. Appl.. (SENSORDEVICES), 2010 First Int. Conf., vol., no., pp.146150, 18-25 July 2010 Google Scholar
7. Ferlauto, A.S., Ferreira, G.M., Pearce, J.M., Wronski, C.R., Collins, R.W., Deng, X., Ganguly, G., Thin Solid Films 455456, 388 (2004)Google Scholar