Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T09:26:13.723Z Has data issue: false hasContentIssue false

Self-injected petawatt laser-driven plasma electron acceleration in 1017 cm−3 plasma

Published online by Cambridge University Press:  12 April 2012

X. WANG
Affiliation:
Department of Physics, University of Texas at Austin, Austin, TX 78712, USA (downer@physics.utexas.edu)
R. ZGADZAJ
Affiliation:
Department of Physics, University of Texas at Austin, Austin, TX 78712, USA (downer@physics.utexas.edu)
S. A. YI
Affiliation:
Department of Physics, University of Texas at Austin, Austin, TX 78712, USA (downer@physics.utexas.edu)
V. KHUDIK
Affiliation:
Department of Physics, University of Texas at Austin, Austin, TX 78712, USA (downer@physics.utexas.edu)
W. HENDERSON
Affiliation:
Department of Physics, University of Texas at Austin, Austin, TX 78712, USA (downer@physics.utexas.edu)
N. FAZEL
Affiliation:
Department of Physics, University of Texas at Austin, Austin, TX 78712, USA (downer@physics.utexas.edu)
Y.-Y. CHANG
Affiliation:
Department of Physics, University of Texas at Austin, Austin, TX 78712, USA (downer@physics.utexas.edu)
R. KORZEKWA
Affiliation:
Department of Physics, University of Texas at Austin, Austin, TX 78712, USA (downer@physics.utexas.edu)
H.-E. TSAI
Affiliation:
Department of Physics, University of Texas at Austin, Austin, TX 78712, USA (downer@physics.utexas.edu)
C.-H. PAI
Affiliation:
Department of Physics, University of Texas at Austin, Austin, TX 78712, USA (downer@physics.utexas.edu)
Z. LI
Affiliation:
Department of Physics, University of Texas at Austin, Austin, TX 78712, USA (downer@physics.utexas.edu)
E. GAUL
Affiliation:
Department of Physics, University of Texas at Austin, Austin, TX 78712, USA (downer@physics.utexas.edu)
M. MARTINEZ
Affiliation:
Department of Physics, University of Texas at Austin, Austin, TX 78712, USA (downer@physics.utexas.edu)
G. DYER
Affiliation:
Department of Physics, University of Texas at Austin, Austin, TX 78712, USA (downer@physics.utexas.edu)
H. QUEVEDO
Affiliation:
Department of Physics, University of Texas at Austin, Austin, TX 78712, USA (downer@physics.utexas.edu)
A. BERNSTEIN
Affiliation:
Department of Physics, University of Texas at Austin, Austin, TX 78712, USA (downer@physics.utexas.edu)
M. DONOVAN
Affiliation:
Department of Physics, University of Texas at Austin, Austin, TX 78712, USA (downer@physics.utexas.edu)
G. SHVETS
Affiliation:
Department of Physics, University of Texas at Austin, Austin, TX 78712, USA (downer@physics.utexas.edu)
T. DITMIRE
Affiliation:
Department of Physics, University of Texas at Austin, Austin, TX 78712, USA (downer@physics.utexas.edu)
M. C. DOWNER
Affiliation:
Department of Physics, University of Texas at Austin, Austin, TX 78712, USA (downer@physics.utexas.edu)

Abstract

We report production of a self-injected, collimated (8 mrad divergence), 600 pC bunch of electrons with energies up to 350 MeV from a petawatt laser-driven plasma accelerator in a plasma of electron density ne = 1017 cm−3, an order of magnitude lower than previous self-injected laser-plasma accelerators. The energy of the focused drive laser pulse (150 J, 150 fs) was distributed over several hot spots. Simulations show that these hot spots remained independent over a 5 cm interaction length, and produced weakly nonlinear plasma wakes without bubble formation capable of accelerating pre-heated (~1 MeV) plasma electrons up to the observed energies. The required pre-heating is attributed tentatively to pre-pulse interactions with the plasma.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonsen, T. M. Jr. and Mora, P. 1993 Self-focusing and Raman scattering of laser pulses in tenuous plasmas. Phys. Fluids B 5, 14401452.CrossRefGoogle Scholar
Clayton, C. E., Ralph, J. E., Albert, F., Fonseca, R. A., Glenzer, S. H., Joshi, C., Lu, W., Marsh, K. A., Martins, S. F., et al. . 2010 Self-guided laser wakefield acceleration beyond 1 Gev using ionization-induced injection. Phys. Rev. Lett. 105, 105003.CrossRefGoogle ScholarPubMed
Esarey, E., Hubbard, R. F., Leemans, W. P., Ting, A. and Sprangle, P. 1997 Electron injection into plasma wakefields by colliding laser pulses. Phys. Rev. Lett. 79, 26822685.CrossRefGoogle Scholar
Esarey, E. and Leemans, W. P. 1999 Nonparaxial propagation of ultrashort laser pulses in plasma channels. Phys. Rev. E 59, 10821095.Google Scholar
Esarey, E., Schroeder, C. B. and Leemans, W. P. 2009 Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 12291285.CrossRefGoogle Scholar
Esarey, E. and Sprangle, P. 1992 Generation of stimulated backscattered harmonic radiation from intense-laser interactions with beams and plasmas. Phys. Rev. A 45, 58725882.CrossRefGoogle ScholarPubMed
Froula, D. H., Clayton, C. E., Doppner, T., Marsh, K. A., Barty, C. P. J., Divol, L., Fonseca, R. A., Glenzer, S. H., Joshi, C., Lu, et al. . 2009 Measurements of the critical power for self-injection of electrons in a laser wakefield accelerator. Phys. Rev. Lett. 103, 215006.CrossRefGoogle Scholar
Gaul, E. W., Martinez, M., Blakeney, J., Jochmann, A., Ringuette, M., Hammond, D., Borger, T., Escamilla, R., Douglas, S., et al. . 2010 Demonstration of a 1.1 petawatt laser based on a hybrid optical parametric chirped pulse amplification/mixed Nd:glass amplifier. Appl. Opt. 49 (9), 16761681.CrossRefGoogle ScholarPubMed
Kalmykov, S. Y., Yi, S. A., Beck, A., Lifschitz, A. F., Davoine, X., Lefebvre, E., Pukhov, A., Khudik, V., Shvets, G., et al. . 2010 Numerical modelling of a 10-cm-long multi-gev laser wakefield accelerator driven by a self-guided petawatt pulse. New J. Phys. 12 (4), 045019.CrossRefGoogle Scholar
Kalmykov, S., Yi, S. A., Khudik, V. and Shvets, G. 2009 Electron self–injection and trapping into an evolving plasma bubble. Phys. Rev. Lett. 103, 135004.CrossRefGoogle ScholarPubMed
Kneip, S., Nagel, S. R., Martins, S. F., Mangles, S. P. D., Bellei, C., Chekhlov, O., Clarke, R. J., Delerue, N., Divall, E. J., et al. . 2009 Near-Gev acceleration of electrons by a nonlinear plasma wave driven by a self-guided laser pulse. Phys. Rev. Lett. 103, 035002.CrossRefGoogle ScholarPubMed
Kostyukov, I., Nerush, E., Pukhov, A. and Seredov, V. 2009 Electron self-injection in multidimensional relativistic-plasma wake fields. Phys. Rev. Lett. 103, 175003.CrossRefGoogle ScholarPubMed
Leemans, W. P., Nagler, B., Gonsalves, A. J., Tóth, C., Nakamura, K., Geddes, C. G. R., Esarey, E., Schroeder, C. B. and Hooker, S. M. 2006 Gev electron beams from a centimetre-scale accelerator. Nature Phys. 696699.CrossRefGoogle Scholar
Lu, W., Huang, C., Zhou, M., Mori, W. B. and Katsouleas, T. 2006 Nonlinear theory for relativistic plasma wakefields in the blowout regime. Phys. Rev. Lett. 96, 165002.CrossRefGoogle ScholarPubMed
Lu, W., Tzoufras, M., Joshi, C., Tsung, F. S., Mori, W. B., Vieira, J., Fonseca, R. A. and Silva, L. O. 2007 Generating multi-Gev electron bunches using single stage laser wakefield acceleration in a 3d nonlinear regime. Phys. Rev. ST Accel. Beams 10, 061301.CrossRefGoogle Scholar
Moore, C. I., Ting, A., Krushelnick, K., Esarey, E., Hubbard, R. F., Hafizi, B., Burris, H. R., Manka, C. and Sprangle, P. 1997 Electron trapping in self–modulated laser wakefields by Raman backscatter. Phys. Rev. Lett. 79, 39093912.CrossRefGoogle Scholar
Mora, P. and Antonsen, T. M. Jr. 1997 Kinetic modeling of intense, short laser pulses propagating in tenuous plasmas. Phys. Plasmas 4, 217229.CrossRefGoogle Scholar
Pak, A., Marsh, K. A., Martins, S. F., Lu, W., Mori, W. B. and Joshi, C. 2010 Injection and trapping of tunnel-ionized electrons into laser-produced wakes. Phys. Rev. Lett. 104, 025003.CrossRefGoogle ScholarPubMed
Pollock, B. B., Clayton, C. E., Ralph, J. E., Albert, F., Davidson, A., Divol, L., Filip, C., Glenzer, S. H., Herpoldt, K., et al. . 2011 Demonstration of a narrow energy spread, ~0.5 GeV electron beam from a two-stage laser wakefield accelerator. Phys. Rev. Lett. 107, 045001.CrossRefGoogle ScholarPubMed
Rosenzweig, J. B., Breizman, B., Katsouleas, T. and Su, J. J. 1991 Acceleration and focusing of electrons in two-dimensional nonlinear plasma wake fields. Phys. Rev. A 44, R6189R6192.CrossRefGoogle ScholarPubMed
Sheng, Z.-M., Mima, K., Sentoku, Y., Jovanović, M. S., Taguchi, T., Zhang, J. and Meyer-ter Vehn, J. 2002 Stochastic heating and acceleration of electrons in colliding laser fields in plasma. Phys. Rev. Lett. 88, 055004.CrossRefGoogle ScholarPubMed
Tajima, K. and Dawson, J. 1979 Laser electron accelerator. Phys. Rev. Lett. 43, 267270.CrossRefGoogle Scholar
Vlasov, S. N., Petrishchev, V. A. and Talanov, V. I. 1971 Averaged description of wave beams in linear and nonlinear media (the method of moments). Radiophys. Quantum Electron. 14, 10621070.CrossRefGoogle Scholar
Yi, S. A., Khudik, V., Kalmykov, S. Y. and Shvets, G. 2011 Hamiltonian analysis of electron self–injection and acceleration into an evolving plasma bubble. Plasma Phys. Controlled Fusion 53, 014012.CrossRefGoogle Scholar