animal

Nutrition

Effect of feeding genetically modified Bt MON810 maize to ∼40-day-old pigs for 110 days on growth and health indicators

S. G. Buzoianua1a2, M. C. Walsha1, M. C. Reaa3, J. P. Cassidya4, R. P. Rossa3, G. E. Gardinera2 and P. G. Lawlora1 c1

a1 Teagasc, Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland

a2 Department of Chemical and Life Sciences, Waterford Institute of Technology, Waterford, Ireland

a3 Teagasc Food Research Centre Moorepark, Fermoy, Co. Cork, Ireland

a4 Veterinary Sciences Centre, University College Dublin, Belfield, Dublin, Ireland

Abstract

A total of 72 male weaned pigs were used in a 110-day study to investigate the effect of feeding genetically modified (GM) Bt MON810 maize on selected growth and health indicators. It was hypothesised that in pigs fed Bt maize, growth and health are not impacted compared with pigs fed isogenic maize-based diets. Following a 12-day basal period, pigs (10.7 ± 1.9 kg body weight (BW); ∼40 days old) were blocked by weight and ancestry and randomly assigned to treatments: (1) non-GM maize diet for 110 days (non-GM), (2) GM maize diet for 110 days (GM), (3) non-GM maize diet for 30 days followed by GM maize diet up to day 110 (non-GM/GM) and (4) GM maize diet for 30 days followed by non-GM maize diet up to day 110 (GM/non-GM). BW and daily feed intake were recorded on days 0, 30, 60 and 110 (n = 15). Body composition was determined by dual energy X-ray absorptiometry (n = 10) on day 80. Following slaughter on day 110, organs and intestines were weighed and sampled for histological analysis and urine was collected for biochemical analysis (n = 10). Serum biochemistry analysis was performed on days 0, 30, 60, 100 and 110. Growth performance and serum biochemistry were analysed as repeated measures with time and treatment as main factors. The slice option of SAS was used to determine treatment differences at individual time points. There was no effect of feeding GM maize on overall growth, body composition, organ and intestinal weight and histology or serum biochemistry on days 60 and 100 and on urine biochemistry on day 110. A treatment × time interaction was observed for serum urea (SU; P < 0.05), creatinine (SC; P < 0.05) and aspartate aminotransferase (AST; P < 0.05). On day 30, SU was lower for the non-GM/GM treatment compared with the non-GM, GM and GM/non-GM treatments (P < 0.05). On day 110, SC was higher for the non-GM/GM and GM/non-GM treatments compared with non-GM and GM treatments (P < 0.05). Overall, serum total protein was lower for the GM/non-GM treatment compared with the non-GM/GM treatment (P < 0.05). The magnitude of change observed in some serum biochemical parameters did not indicate organ dysfunction and the changes were not accompanied by histological lesions. Long-term feeding of GM maize to pigs did not adversely affect growth or the selected health indicators investigated.

(Received April 21 2011)

(Accepted January 12 2012)

(Online publication February 24 2012)

Correspondence:

c1 E-mail: peadar.lawlor@teagasc.ie