Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-28T16:24:47.368Z Has data issue: false hasContentIssue false

Electron transport in semiconducting SnO2: Intentional bulk donors and acceptors, the interface, and the surface

Published online by Cambridge University Press:  12 June 2012

Oliver Bierwagen*
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, D-10117 Berlin, Germany; and Materials Department, University of California, Santa Barbara, California 93106
Takahiro Nagata
Affiliation:
National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan; and Materials Department, University of California, Santa Barbara, California 93106
Mark E. White
Affiliation:
Materials Department, University of California, Santa Barbara, California 93106
Min-Ying Tsai
Affiliation:
Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106
James S. Speck
Affiliation:
Materials Department, University of California, Santa Barbara, California 93106
*
a)Address all correspondence to this author. e-mail: bierwagen@pdi-berlin.de
Get access

Abstract

The transport properties of doped and undoped, high quality, plasma-assisted molecular beam epitaxy grown tin dioxide (SnO2) thin films are reviewed. Intentional doping can vary the SnO2 resistivity over more than seven orders of magnitude from a transparent conducting oxide-like conductivity up to the semi-insulating range. A region of high unintentional n-type conductivity was identified in the substrate interface region and had to be accounted for. Sb was a well-behaved shallow donor up to the regime of conducting oxides. In and Ga were too deep acceptors to achieve p-type conductivity but were suitable to render SnO2 semi-insulating. While the surface accumulation layer strongly influenced contact properties, its conductance was negligible. The methodology used here for studying the transport can also be applied to other semiconducting oxides.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Batzill, M. and Diebold, U.: The surface and materials science of tin oxide. Prog. Surf. Sci. 79, 47 (2005).CrossRefGoogle Scholar
2.Jarzebski, Z.M. and Morton, J.P.: Physical properties of SnO2 materials: II. Electrical properties. J. Electrochem. Soc. 123, 299C (1976).CrossRefGoogle Scholar
3.White, M.E., Tsai, M.Y., Wu, F., and Speck, J.S.: Plasma-assisted molecular beam epitaxy and characterization of SnO2 (101) on r-plane sapphire. J. Vac. Sci. Technol., A 26, 1300 (2008).CrossRefGoogle Scholar
4.Vasheghani Farahani, S.K., Veal, T.D., Sanchez, A.M., Bierwagen, O., White, M.E., Gorfman, S., Thomas, P.A., Speck, J.S., and McConville, C.F.: Influence of charged-dislocation density variations on carrier mobility in heteroepitaxial semiconductors: The case of SnO2 on sapphire. Phys. Rev. (2012, submitted).CrossRefGoogle Scholar
5.White, M.E., Bierwagen, O., Tsai, M.Y., and Speck, J.S.: Electron transport properties of antimony doped SnO2 single crystalline thin films grown by plasma-assisted molecular beam epitaxy. J. Appl. Phys. 106, 093704 (2009).CrossRefGoogle Scholar
6.Rakennus, K., Tappura, K., Hakkarainen, T., Asonen, H., Laiho, R., Rolfe, S.J., and Dubowski, J.J.: Interface effects on electrical properties of high purity InP grown by gas-source molecular beam epitaxy. J. Cryst. Growth 110, 910 (1991).CrossRefGoogle Scholar
7.Bierwagen, O., Choi, S., and Speck, J.S.: Hall and Seebeck profiling: Determining surface, interface, and bulk electron transport properties in unintentionally doped InN. Phys. Rev. B 84, 235302 (2011).CrossRefGoogle Scholar
8.White, M.E., Bierwagen, O., Tsai, M.Y., and Speck, J.S.: Synthesis and characterization of highly resistive epitaxial indium-doped SnO2. Appl. Phys. Express 3, 051101 (2010).CrossRefGoogle Scholar
9.Tsai, M.Y., White, M.E., and Speck, J.S.: Plasma-assisted molecular beam epitaxy of SnO2 on TiO2. J. Cryst. Growth 310, 4256 (2008).CrossRefGoogle Scholar
10.Ohgaki, T., Ohashi, N., Sugimura, S., Ryoken, H., Sakaguchi, I., Adachi, Y., and Haneda, H.: Positive Hall coefficients obtained from contact misplacement on evident n-type ZnO films and crystals. J. Mater. Res. 23, 2293 (2008).CrossRefGoogle Scholar
11.Bierwagen, O., Ive, T., Van de Walle, C.G., and Speck, J.S.: Causes of incorrect carrier-type identification in van der Pauw–Hall measurements. Appl. Phys. Lett. 93, 242108 (2008).CrossRefGoogle Scholar
12.Look, D.C.: Electrical and optical properties of p-type ZnO. Semicond. Sci. Technol. 20, S55 (2005).CrossRefGoogle Scholar
13.Bierwagen, O., Nagata, T., Ive, T., Van de Walle, C.G., and Speck, J.S.: Dissipation-factor-based criterion for the validity of carrier-type identification by capacitance-voltage measurements. Appl. Phys. Lett. 94, 152110 (2009).CrossRefGoogle Scholar
14.Singh, A.K., Janotti, A., Scheffler, M., and Van de Walle, C.G.: Sources of electrical conductivity in SnO2. Phys. Rev. Lett. 101, 055502 (2008).CrossRefGoogle ScholarPubMed
15.Fonstad, C.G. and Rediker, R.H.: Electrical properties of high-quality stannic oxide crystals. J. Appl. Phys. 42, 2911 (1971).CrossRefGoogle Scholar
16.Tsukazaki, A., Ohtomo, A., and Kawasaki, M.: High-mobility electronic transport in ZnO thin films. Appl. Phys. Lett. 88, 152106 (2006).CrossRefGoogle Scholar
17.Toyosaki, H., Kawasaki, M., and Tokura, Y.: Electrical properties of Ta-doped SnO2 thin films epitaxially grown on TiO2 substrate. Appl. Phys. Lett. 93, 132109 (2008).CrossRefGoogle Scholar
18.Lany, S. and Zunger, A.: Polaronic hole localization and multiple hole binding of acceptors in oxide wide-gap semiconductors. Phys. Rev. B 80, 085202 (2009).CrossRefGoogle Scholar
19.Tsai, M.Y.: Plasma-assisted molecular beam epitaxy growth and properties of tin oxide. Ph.D. Thesis, University of California, Santa Barbara, CA, 2010.Google Scholar
20.Schleife, A., Varley, J.B., Fuchs, F., Rödl, C., Bechstedt, F., Rinke, P., Janotti, A., and Van de Walle, C G.: Tin dioxide from first principles: Quasiparticle electronic states and optical properties. Phys. Rev. B 83, 035116 (2011).CrossRefGoogle Scholar
21.White, M.E.: Molecular beam epitaxy and characterization of stannic oxide. Ph.D. Thesis, University of California, Santa Barbara, CA, 2010.Google Scholar
22.Bierwagen, O., White, M.E., Tsai, M.Y., Nagata, T., and Speck, J.S.: Non-alloyed Schottky and ohmic contacts to as-grown and oxygen-plasma treated n-type SnO2 (110) and (101) thin films. Appl. Phys. Express 2, 106502 (2009).CrossRefGoogle Scholar
23.Nagata, T., Bierwagen, O., White, M.E., Tsai, M.Y., and Speck, J.S.: Study of the Au Schottky contact formation on oxygen plasma treated n-type SnO2 (101) thin films. J. Appl. Phys. 107, 033707 (2010).CrossRefGoogle Scholar
24.Swartz, C.H., Tompkins, R.P., Giles, N.C., Myers, T.H., Lu, H., Schaff, W.J., and Eastman, L.F.: Investigation of multiple carrier effects in InN epilayers using variable magnetic field hall measurements. J. Cryst. Growth 269, 29 (2004).CrossRefGoogle Scholar
25.Nagata, T., Bierwagen, O., White, M.E., Tsai, M.Y., Yamashita, Y., Yoshikawa, H., Ohashi, N., Kobayashi, K., Chikyow, T., and Speck, J.S.: XPS study of Sb-/In-doping and surface pinning effects on the Fermi level in SnO2 (101) thin films. Appl. Phys. Lett. 98, 232107 (2011).CrossRefGoogle Scholar