Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-28T17:05:14.729Z Has data issue: false hasContentIssue false

Biological control of sciarid and phorid pests of mushroom with predatory mites from the genus Hypoaspis (Acari: Hypoaspidae) and the entomopathogenic nematode Steinernema feltiae

Published online by Cambridge University Press:  09 March 2007

S. Jess*
Affiliation:
Applied Plant Science Division, Department of Agriculture and Rural Development for Northern Ireland, Newforge Lane, Belfast BT9 5PX, UK Department of Applied Plant Science, Queen's University of Belfast, Newforge Lane, Belfast BT9 5PX, UK
J.F.W. Bingham
Affiliation:
Applied Plant Science Division, Department of Agriculture and Rural Development for Northern Ireland, Newforge Lane, Belfast BT9 5PX, UK
*
*Fax: 02890 255003 E-mail: stephen.jess@dardni.gov.uk

Abstract

In small-scale experiments, the predatory mites, Hypoaspis aculeifer (Canestrini) and H. miles Berlese, applied at 700 mites m−2, and the entomopathogenic nematode, Steinernema feltiae (Filipjev) applied at 3 × 10−6 nematodes m−2 controlled sciarids and phorids in mushroom compost and casing substrates. For both mite species, earliest application to the growing substrate following sciarid infestation reduced sciarid emergence. In contrast, later application of each biological control agent provided more effective control of phorid emergence. The behaviour of adult mites suggested that H. aculeifer were more positively geotactic than H. miles although both species could penetrate compost and casing substrates to a depth of 2–12 cm. A majority of S. feltiae nematodes resided at a depth of 2–4 cm in both substrate types. Independent application of H. aculeifer provided more comprehensive control of sciarids and phorids than the other biological agents studied, owing to its better dispersal within compost and casing, and ability to attack larvae of differing ages.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al Amidi, A.H.K. (1993) Studies on the occurrence of pests in Irish mushroom composts and the efficiency of the predatory mite Parasitus bituberosus (Acari: Parasitidae) against cecids and sciarids. 202 pp. PhD thesis, St Patrick's College, Maynooth, Ireland.Google Scholar
Ali, O. (1996) Studies on Hypoaspis miles (Berlese) (Acari: Laelapidae) and its potential for the control of the sciarid fly Lycoriella solani (Winnertz) (Diptera: Sciaridae). PhD thesis, University College, Dublin.Google Scholar
Ali, O., Dunne, R. & Brennan, P. (1997) Biological control of the sciarid fly, Lycoriella solani by the predatory mite, Hypoaspis miles (Acari: Laelapidae) in mushroom crops. Systematic and Applied Acarology 2, 7180.CrossRefGoogle Scholar
Ali, O., Dunne, R. & Brennan, P. (1999) Effectiveness of the predatory mite Hypoaspis miles (Acari: Mesostigmata: Hypoaspidae) in conjunction with pesticides for control of the mushroom fly Lycoriella solani (Diptera; Sciaridae). Experimental and Applied Acarology 23, 6577.CrossRefGoogle Scholar
Anon. (2001a) Basic horticultural statistics for the UK: calendar and crop years 1990/91–2000/01. 20 pp. DEFRA Statistics (Commodities and Food), York.Google Scholar
Anon. (2001b) Statistical review of Northern Ireland agriculture. 31 pp. Department of Agriculture and Rural Development for Northern Ireland 2000. Economics and Statistics Division. HMSO Norwich.Google Scholar
Binns, E.S. (1973) Predatory mites-neglected allies. Mushroom Journal 12, 540544.Google Scholar
Binns, E.S. (1975) Mushroom mycelium and compost substrates in relation to the survival of the larva of the sciarid Lycoriella auripila. Annals of Applied Biology 80, 115.CrossRefGoogle Scholar
Binns, E.S. (1976) Mushroom pests. Report of the Glasshouse Crops Research Institute for 1975, pp. 9293.Google Scholar
Binns, E.S. (1980) Field and laboratory observations on the substrates of the fungus gnats Lycoriella auripila (Diptera: Sciaridae). Annals of Applied Biology 96, 143152.CrossRefGoogle Scholar
Brodsgaard, H.F., Sardar, M.A. & Enkegaard, A. (1996) Prey preference of Hypoaspis miles (Berlese) (Acarina: Hypoaspididae): Non-interference with other beneficials in glasshouse crops. IOBC/WPRS Bulletin 19, 2326.Google Scholar
Cantelo, W.W., McDaniel, J.S. & Thimijan, R.W. (1977) Research to reduce fly problems in the Americam mushroom industry. In Smith, F.F. & Webb, R.E. (Eds) Pest management in protected culture crops. 15 pp.Google Scholar
Cantwell, G.E. & Cantelo, W.W. (1984) Effectivenes of Bacillus thuringiensis var. israeliensis in controlling the sciarid fly Lycoriella mali in mushroom compost. Journal of Economic Entomology 77, 473475.Google Scholar
Chambers, R.J., Wright, E.M. & Lind, R.J. (1993) Biological control of glasshouse sciarid flies (Bradysia spp.) with the predatory mite, Hypoaspis miles, on Cyclamen and Poinsettia. Biocontrol Science and Technology 3, 285293.CrossRefGoogle Scholar
de Jong, J.H., Lobbes, P.V. & Bolland, H.R. (1981) Karyotypes and sex determination in two species of laelapid mites (Acari: Gamasida). Genetica 55, 187190.CrossRefGoogle Scholar
Enkegaard, A., Brodsgaard, H.F. & Sardar, M.A. (1995) Hypoaspis miles – a polyphagous predatory mite for the control of soil dwelling pests: Biology and food preferences. pp. 247256 in Proceedings from the 12th Danish Plant Protection Conference. Pests and DiseasesSP Rapport.Google Scholar
Enkegaard, A., Sardar, M.A. & Brodsgaard, H.F. (1997) The predatory mite Hypoaspis miles: biological and demographic characteristics on two prey species, the mushroom sciarid fly, Lycoriella solani, and the mould mite, Tyrophagus putrescentiae. Entomologia Experimentalis et Applicata 82, 135146.Google Scholar
Epsky, N.D., Walter, D.E. & Capinera, J.L. (1988) Potential role of nematophagous microarthropods as biotic mortality factors of entomogenous nematodes (Rhabditida: Steinernematidae, Heterorhabditidae). Journal of Economic Entomology 81, 821825.Google Scholar
Fletcher, J.T., White, P.F. & Gaze, R.H. (1989) Mushrooms: pest and disease control. 2nd edn. Andover, Hants, Intercept.Google Scholar
Gillespie, D.R. & Quiring, D.M.J. (1990) Biological control of fungus gnats, Bradysia spp. (Diptera: Sciaridae), and western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), in greenhouses using a soil-dwelling predatory mite Geolaelaps sp. nr aculeifer (Canestrini) (Acari: Laelapidae). Canadian Entomologist 122, 975983.Google Scholar
Glockemann, B. (1992) Biological control of Frankliniella occidentalis on ornamental plants using predatory mites. EPPO Bulletin 22, 397404.CrossRefGoogle Scholar
Grewal, P.S. & Richardson, P.N. (1993) Effects of application rates of Steinernema feltiae (Nematoda: Steinernematidae) on biological control of the mushroom fly Lycoriella auripila (Diptera: Sciaridae). Biocontrol Science and Technology 3, 2940.CrossRefGoogle Scholar
Grewal, P.S., Richardson, P.N., Collins, G. & Edmondson, R.N. (1992) Comparative effects of Steinernema feltiae (Nematoda: Steinernematidae) and insecticides on yield and cropping of the mushroom Agaricus bisporus. Annals of Applied Biology 121, 511520.Google Scholar
Hall, M. & Hedlund, K. (1999) The predatory mite Hypoaspis aculeifer is attracted to food of its fungivorous prey. Pedobiologia 43, 1117.CrossRefGoogle Scholar
Hooper, D.J. (1986) Extraction of nematodes from plant material. pp. 5456in Southey, J.J. (Ed.) Laboratory methods for work with plant and soil nematodes. MAFF/ADAS Reference Book 402. London, HMSO.Google Scholar
Hussey, N.W. & Gurney, B. (1968) Biology and control of the sciarid Lycoriella auripila (Winnertz) (Diptera: Lycoriidae) in mushroom culture. Annals of Applied Biology 62, 395402.CrossRefGoogle Scholar
Jess, S. & Kilpatrick, M. (2000) An integrated approach to the control of Lycoriella solani (Diptera: Sciaridae) during production of the cultivated mushroom (Agaricus bisporus). Pest Management Science 56, 477485.Google Scholar
Karg, W. (1961) Ökologische Untersuchungen von edaphischen Gamasiden (Acarina, Parasitiformes) Pedobiologia 1, 7798.CrossRefGoogle Scholar
Kidd, S.L.B.Jess, S. & McCallion, (1998) Northern Ireland mushroom crops 1995. Pesticide Usage Survey Report 140. Belfast, HMSO.Google Scholar
Lesna, I., Sabelis, M.W., Bolland, H.R. & Conijn, C.G.M. (1995) Candidate natural enemies for control of Rhizoglyphus robini (Claperèdae) (Acari: Astigmata) in lily bulbs: exploration in the field and preselection in the laboratory. Experimental and Applied Acarology 19, 655669.CrossRefGoogle Scholar
Lesna, I., Sabelis, M.W. & Conijn, C.G.M (1996) Biological control of the bulb mite, Rhizoglyphus robini, by the predatory mite Hypoaspis aculeifer, on lilies: predator-prey interactions at various spatial scales. Journal of Applied Ecology 33, 369376.Google Scholar
Lesna, I., Conijn, C.G.M.Sabelis, M.W. & van Straalen, N.M. (2000) Biological control of the bulb mite, Rhizoglyphus robini, by the predatory mite Hypoaspis aculeifer, on lilies: predator–prey dynamics in the soil, under greenhouse and field conditions. Biocontrol Science and Technology 10, 179193.Google Scholar
Lind, R. (1993) Control of mushroom files with the predatory mite, Hypoaspis miles. Contract Report Horticultural Development Council Project M9. 28 pp.Google Scholar
Lobbes, P. & Schotten, C. (1980) Capacities of increase of the soil mite Hypoaspis aculeifer Canestrini (Mesostigmata: Laelapidae). Zeitschrift für Angewandte Entomologie 90, 922.CrossRefGoogle Scholar
Murphy, R.W. & Sardar, M.A. (1991) Resource allocation and utilisation contrasts in Hypoaspis aculeifer (Can.) and Alliphis haleri (Gr. & R. Can.) (Mesostigmata) with emphasis on food source. pp. 301311in Schuster, R. & Murphy, P. (Eds) The Acari. Reproduction, development and life history strategies. London, Chapman and Hall.Google Scholar
Nickle, W.R. & Cantelo, W.W. (1991) Control of a mushroom-infesting fly, Lycoriella mali, with Steinernema feltiae. Journal of Nematology 23, 145147.Google ScholarPubMed
Ragusa, S. & Zedan, M.A. (1988) Biology and predation of Hypoaspis aculeifer (Canestrini) (Parasitiformes, Dermanyssidae) on Rhizoglyphus echinopus (Fum. & Rob.) (Acariformes: Acaridae). Redia 71, 213225.Google Scholar
Ragusa, S., Zedan, M.A. & Sciacchitano, M.A. (1986) The effects of food from plant and animal sources on the development and production of the predaceous mite Hypoaspis aculeifer (Canestrini) (Parasitiformes, Dermannysidae). Redia 69, 481488.Google Scholar
Rasmy, A.H., Nasr, A.K. & Reda, A.S. (1987) Reproductive response and development of three predacious mites utilising the acarid mite Tyrophagus casei Oud. as an alternative diet. Anzeiger für Schlädlingskunde. Pflanzenschutz, Umweltschutz 60, 9294.CrossRefGoogle Scholar
Richardson, P.N. (1987) Susceptibility of mushroom pests to the insect-parasitic nematodes Steinernema feltiae and Heterorhabditis heliothidis. Annals of Applied Biology 111, 433438.CrossRefGoogle Scholar
Scheepmaker, J.W.A., Geels, F.P. & van Griensven, L.G.L.D. & Smits, P.H. (1996) Substrate dependent larval development and emergence of the mushroom pests Lycoriella auripila and Megaselia halterata. Entomologia Experimentalis et Applicata 79, 329334.CrossRefGoogle Scholar
Scheepmaker, J.W.A., Geels, F.P., Smits, P.H., Rutjens, A.J., van Griensven, L.G.L.D. (1998a) Comparison of the efficacy of entomopathogenic nematodes for the biological control of the mushroom pests Lycoriella auripila (Sciaridae) and Megaselia halterata (Phoridae). Biocontrol Science and Technology 8, 277288.CrossRefGoogle Scholar
Scheepmaker, J.W.A., Geels, F.P., van Griensven, L.G.L.D. & Smits, P.H. (1998b) Susceptibility of larvae of the mushroom fly Megaselia halterata to the entomopathogenic nematode Steinernema feltiae in bioassays. Biocontrol 43, 201214.CrossRefGoogle Scholar
Shereef, G.M., Soliman, Z.R. & Afifi, A.M. (1980) Economic importance of the mite Hypoaspis miles (Berlese) (Mesostigmata: Laelapidae) and its life history. Bulletin of the Zoological Society of Egypt 30, 103108.Google Scholar
Smith, J.E. & White, P.F. (1996) Diazinon resistance in mushroom pests. Project News of the Horticultural Development Council 36, 1215.Google Scholar
Usher, M.B. & Davis, P.R. (1983) The biology of Hypoaspis aculeifer (Canestrini) (Mesostigmata): is there a tendency toward social behaviour Acarologia 24, 243245.Google Scholar
White, P.F. (1995) Biological control of mushroom pests: an evaluation. pp. 475484in Proceedings of the International Congress on the Science and Cultivation of Edible Fungi, 2, Oxford, Rotterdam, Balkema.Google Scholar
White, P.F. (1997) The use of chemicals, antagonists, repellents and physical barriers for the control of Lycoriella auripila (Diptera: Sciaridae), a pest of the cultivated mushroom Agaricus bisporus. Annals of Applied Biology 131, 2942.Google Scholar
White, P.F. & Gribben, D.A. (1989) Variation in resistance to diazinon by the mushroom sciarid Lycoriella auripila. Mushroom Science 12, 851859.Google Scholar
White, P.F. & Jarrett, P. (1990) Laboratory and field tests with Bacillus thuringiensis for the control of the mushroom sciarid Lycoriella auripila. pp. 373378 in Proceedings 1990 Brighton Crop Protection Conference – Pests and Diseases. Farnham, UK, British Crop Protection Council.Google Scholar
Wright, E.M. & Chambers, R.J. (1994) The biology of the predatory mite Hypoaspis miles (Acari: Laelapidae), a potential biological control agent of Bradysia paupera (Dipt.: Sciaridae). Entomophaga 39, 225235.Google Scholar