Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-28T16:44:16.563Z Has data issue: false hasContentIssue false

HERMITE–HADAMARD TYPE INEQUALITIES FOR FUNCTIONS WHEN A POWER OF THE ABSOLUTE VALUE OF THE FIRST DERIVATIVE IS P-CONVEX

Published online by Cambridge University Press:  12 December 2011

A. BARANI*
Affiliation:
Department of Mathematics, Lorestan University, PO Box 465, Khoramabad, Iran (email: alibarani2000@yahoo.com, barani.a@lu.ac.ir)
S. BARANI
Affiliation:
Department of Civil Engineering, Shahid Chamran University, PO Box 135, Ahvaz, Iran (email: seebb86@yahoo.com)
*
For correspondence; e-mail: alibarani2000@yahoo.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we extend some estimates of the right-hand side of a Hermite–Hadamard type inequality for functions whose derivatives’ absolute values are P-convex. Applications to the trapezoidal formula and special means are introduced.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2011

References

[1]Akdemir, A. O. and Özdemir, M. E., ‘Some Hadamard-type inequalities for coordinated P-convex functions and Godunova–Levin functions’, AIP Conf. Proc. 1309 (2010), 7–15.Google Scholar
[2]Barani, A., Ghazanfari, A. G. and Dragomir, S. S., ‘Hermite–Hadamard inequality through prequasiinvex functions’, RGMIA Res. Rep. Coll. 14 (2011), article 48.Google Scholar
[3]Barani, A., Barani, S. and Dragomir, S. S., ‘Refinements of Hermite–Hadamard type inequality for functions whose second derivatives absolute values are quasiconvex’, RGMIA Res. Rep. Coll. 14 (2011), article 69.Google Scholar
[4]Dragomir, S. S., ‘Two mappings on connection to Hadamard’s inequality’, J. Math. Anal. Appl. 167 (1992), 4956.Google Scholar
[5]Dragomir, S. S., ‘On Hadamard’s inequalities for convex functions’, Mat. Balkanica 6 (1992), 215222.Google Scholar
[6]Dragomir, S. S., Pečarić, J. E. and Sandor, J., ‘A note on the Jensen–Hadamard inequality’, Anal. Num. Theor. Approx. 19 (1990), 2934.Google Scholar
[7]Dragomir, S. S., Pečarić, J. E. and Persson, L. E., ‘Some inequalities of Hadamard type’, Soochow J. Math. 21 (1995), 335341.Google Scholar
[8]Dragomir, S. S. and Pearce, C. E. M., ‘Quasiconvex functions and Hadamard’s inequality’, Bull. Aust. Math. Soc. 57 (1998), 377385.Google Scholar
[9]Dragomir, S. S. and Agarwal, R. P., ‘Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula’, Appl. Math. Lett. 11 (1998), 9195.Google Scholar
[10]Ion, D. A., ‘Some estimates on the Hermite–Hadamard inequality through quasiconvex functions’, Ann. Univ. Craiova Math. Comp. Sci. Ser. 34 (2007), 8287.Google Scholar
[11]Özdemir, M. E. and Yıldız, C., ‘New inequalities for Hermite–Hadamard and Simpson type and applications’, arXiv:1103.1965v1 [math.CA] 10 Mar 2011.Google Scholar
[12]Pečarić, J., Proschan, F. and Tong, Y. L., Convex Functions, Partial Ordering and Statistical Applications (Academic Press, New York, 1991).Google Scholar
[13]Tseng, K. L., Yang, G. S. and Dragomir, S. S., ‘On quasiconvex functions and Hadamard’s inequality’, RGMIA Res. Rep. Coll. 14 (2003), article 1.Google Scholar