Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-28T20:04:58.464Z Has data issue: false hasContentIssue false

Chrono- and lithostratigraphy of a Mesozoic–Tertiary fore- to intra-arc basin: Adelaide Island, Antarctic Peninsula

Published online by Cambridge University Press:  30 November 2011

TEAL R. RILEY*
Affiliation:
British Antarctic Survey, Natural Environment Research Council, Madingley Road, Cambridge, CB3 0ET, UK
MICHAEL J. FLOWERDEW
Affiliation:
British Antarctic Survey, Natural Environment Research Council, Madingley Road, Cambridge, CB3 0ET, UK
MARTIN J. WHITEHOUSE
Affiliation:
Swedish Museum of Natural History, Box 50007, Stockholm 104 05, Sweden
*
Author for correspondence: t.riley@bas.ac.uk

Abstract

The Mesozoic fore-arc of the Antarctic Peninsula is exposed along its west coast. On Adelaide Island, a 2–3 km succession of turbiditic coarse sandstones and volcanic rocks is exposed. Four U–Pb (zircon) ages are presented here that, in combination with a new stratigraphy, have permitted a robust chrono- and lithostratigraphy to be constructed, which in turn has allowed tentative correlations to be made with the Fossil Bluff Group of Alexander Island, where the ‘type’ fore-arc sequences are described. The lithostratigraphy of Adelaide Island includes the definition of five volcanic/sedimentary formations. The oldest formation is the Buchia Buttress Formation (149.5 ± 1.6 Ma) and is correlated with the Himalia Ridge Formation of Alexander Island. The sandstone–conglomerate dominated succession of the Milestone Bluff Formation (113.9 ± 1.2 Ma) is tentatively correlated with the Pluto Glacier Formation of Alexander Island. Three dominantly volcanic formations are recognized on Adelaide Island, akin to the volcanic rocks of the Alexander Island Volcanic Group; the Mount Liotard Formation is formed of 2 km of basaltic andesite lavas, whilst the Bond Nunatak Formation is also dominated by basaltic andesite lavas, but interbedded with volcaniclastic rocks. The Reptile Ridge Formation has been dated at 67.6 ± 0.7 Ma and is characterized by hydrothermally altered rhyolitic crystal-lithic tuffs. Tentative correlations between Adelaide Island and Alexander Island preclude the two areas forming part of distinct terranes as has been suggested previously, and a proximal source for volcaniclastic sediments also indicates an exotic terrane origin is unlikely.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Butterworth, P. J. 1991. The role of eustasy in the development of a regional shallowing event in a tectonically active basin: Fossil Bluff Group (Jurassic-Cretaceous), Alexander Island, Antarctica. In Sedimentation, Tectonics and Eustasy (ed. Macdonald, D. I. M.), pp. 307–29. International Association of Sedimentologists, Special Publication no. 12. Oxford: Blackwell Scientific.CrossRefGoogle Scholar
Butterworth, P. J., Crame, J. A., Howlett, P. J. & Macdonald, D. I. M. 1988. Lithostratigraphy of Upper Jurassic-Lower Cretaceous strata of eastern Alexander Island, Antarctica. Cretaceous Research 9, 249–64.CrossRefGoogle Scholar
Butterworth, P. J. & Macdonald, D. I. M. 1991. Basin shallowing from the Mesozoic Fossil Bluff Group of Alexander Island and its regional tectonic significance. In Geological Evolution of Antarctica (eds Thomson, M. R. A., Crame, J. A. & Thomson, J. W.), pp. 449–53. Cambridge: Cambridge University Press.Google Scholar
Crame, J. A. & Howlett, P. J. 1988. Late Jurassic and Early Cretaceous biostratigraphy of the Fossil Bluff Formation, Alexander Island. British Antarctic Survey Bulletin 78, 135.Google Scholar
Dewar, G. J. 1970. The geology of Adelaide Island. British Antarctic Survey Scientific Reports 57, 66 pp.Google Scholar
Doubleday, P. A., Leat, P. T., Alabaster, T., Nell, P. A. R. & Tranter, T. H. 1994. Allochthonous oceanic basalts within the Mesozoic accretionary complex of Alexander Island, Antarctica: remnants of proto-Pacific oceanic crust. Journal of the Geological Society, London 151, 6578.CrossRefGoogle Scholar
Doubleday, P. A., Macdonald, D. I. M. & Nell, P. A. R. 1993. Sedimentology and structure of the trench-slope to forearc basin transition in the Mesozoic of Alexander Island, Antarctica. Geological Magazine 130, 737–54.CrossRefGoogle Scholar
Doubleday, P. A. & Storey, B. C. 1998. Deformation history of a Mesozoic forearc basin sequence on Alexander Island, Antarctic Peninsula. Journal of South American Earth Sciences 11, 121.CrossRefGoogle Scholar
Ferraccioli, F., Jones, P. C., Vaughan, A. P. M. & Leat, P. T. 2006. New aerogeophysical view of the Antarctic Peninsula: more pieces, less puzzle. Geophysical Research Letters 33, L05310, doi:10.1029/2005GL024636.CrossRefGoogle Scholar
Griffiths, C. J. & Oglethorpe, R. D. J. 1998. The stratigraphy and geochronology of Adelaide Island. Antarctic Science 10, 462–75.CrossRefGoogle Scholar
Haselwimmer, C. E., Riley, T. R. & Liu, J. G. 2010. Assessing the potential of multispectral remote sensing for lithological mapping on the Antarctic Peninsula: case study from eastern Adelaide Island, Graham Land. Antarctic Science 22, 299318.CrossRefGoogle Scholar
Jefferson, T. H. 1980. Angiosperm fossils in supposed Jurassic volcanogenic shales, Antarctica. Nature 285, 157–8.CrossRefGoogle Scholar
Kelly, S. R. A. & Moncrieff, A. C. M. 1992. Marine molluscan constraints on the age of Cretaceous fossil forests of Alexander Island, Antarctica. Geological Magazine 129, 771–8.CrossRefGoogle Scholar
Leat, P. T., Flowerdew, M. J., Riley, T. R., Whitehouse, M. J., Scarrow, J. H. & Millar, I. L. 2009. Zircon U-Pb dating of Mesozoic volcanic and tectonic events in north-west Palmer Land and south-west Graham Land, Antarctica. Antarctic Science 21, 633–41.CrossRefGoogle Scholar
Leat, P. T., Riley, T. R., Wareham, C. D., Millar, I. L., Kelley, S. P. & Storey, B. C. 2002. Tectonic setting of primitive magmas in volcanic arcs: an example from the Antarctic Peninsula. Journal of the Geological Society, London 159, 3144.CrossRefGoogle Scholar
Leat, P. T., Scarrow, J. H. & Millar, I. L. 1995. On the Antarctic Peninsula batholith. Geological Magazine 132, 399412.CrossRefGoogle Scholar
Ludwig, K. R. 2003. User manual for Isoplot 3.00, a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Centre Special Publication no. 4, 70 pp.Google Scholar
Macdonald, D. I. M., Leat, P. T., Doubleday, P. A. & Kelly, S. R. A. 1999. On the origin of fore-arc basins: new evidence of formation by rifting from the Jurassic of Alexander Island, Antarctica. Terra Nova 11, 186–93.CrossRefGoogle Scholar
McCarron, J. J. 1994. Stratigraphical observations on the Tertiary calc-alkaline volcanic sequences in Alexander Island. Antarctic Science 6, 409–10.CrossRefGoogle Scholar
McCarron, J. J. 1997. A unifying lithostratigraphy of late Cretaceous–early Tertiary fore-arc volcanic sequences on Alexander Island, Antarctica. Antarctic Science 9, 209–20.CrossRefGoogle Scholar
McCarron, J. J. & Millar, I. L. 1997. The age and stratigraphy of fore-arc magmatism on Alexander Island, Antarctica. Geological Magazine 134, 507–22.CrossRefGoogle Scholar
Moncrieff, A. C. M. & Kelly, S. R. A. 1993. Lithostratigraphy of the uppermost Fossil Bluff Group (Early Cretaceous) of Alexander Island, Antarctica: history of an Albian regression. Cretaceous Research 14, 115.CrossRefGoogle Scholar
Moyes, A. B. & Pankhurst, R. J. 1994. Andean Intrusive Suite. In Geological Map of Adelaide Island to Foyn Coast (eds Moyes, A. B., Willan, C. F. H. & Thomson, J. W.), pp. 1018. BAS GEOMAP Series, sheet 3, 1:250 000, with supplementary text. Cambridge: British Antarctic Survey.Google Scholar
Nichols, G. J. & Cantrill, D. J. 2002. Tectonic and climatic controls on a Mesozoic fore-arc basin succession, Alexander Island, Antarctica. Geological Magazine 139, 313–30.CrossRefGoogle Scholar
Pankhurst, R. J. 1982. Rb-Sr geochronology of Graham Land, Antarctica. Journal of the Geological Society, London 139, 701–11.CrossRefGoogle Scholar
Steiger, R. H. & Jäger, E. 1977. Subcomission on geochronology; convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters 36, 359–62.CrossRefGoogle Scholar
Storey, B. C., Brown, R. W., Carter, A., Doubleday, P. A., Hurford, A. J., Macdonald, D. I. M. & Nell, P. A. R. 1996. Fission-track evidence for the thermotectonic evolution of a Mesozoic–Cenozoic fore-arc, Antarctica. Journal of the Geological Society, London 153, 6582.CrossRefGoogle Scholar
Taylor, B. J., Thomson, M. R. A. & Willey, L. E. 1979. The geology of the Ablation Point-Keystone Cliffs area, Alexander Island. British Antarctic Survey Scientific Reports 82, 65 pp.Google Scholar
Thomson, M. R. A. 1972. New discoveries of fossils in the Upper Jurassic volcanic group of Adelaide Island. British Antarctic Survey Bulletin 30, 95101.Google Scholar
Thomson, M. R. A. 1979. Upper Jurassic and Lower Cretaceous ammonite faunas of the Ablation Point area, Alexander Island. British Antarctic Survey Scientific Reports 97, 37 pp.Google Scholar
Thomson, M. R. A. & Griffiths, C. J. 1994. Palaeontology. In Geological Map of Adelaide Island to Foyn Coast (eds Moyes, A. B., Willan, C. F. H. & Thomson, J. W.), pp. 35–8. BAS GEOMAP Series, sheet 3, 1:250 000, with supplementary text. Cambridge: British Antarctic Survey.Google Scholar
Thomson, M. R.A. & Pankhurst, R. J. 1983. Age of post-Gondwanian calc-alkaline volcanism in the Antarctic Peninsula region. In Antarctic Earth Science (eds Oliver, R. L., James, P. R. & Jago, J. B.), pp. 328–33. Cambridge: Cambridge University Press.Google Scholar
Vaughan, A. P. M., Pankhurst, R. J. & Fanning, C. M. 2002. A mid-Cretaceous age for the Palmer Land event: implications for terrane accretion timing and Gondwana palaeolatitudes. Journal of the Geological Society, London 159, 113–16.CrossRefGoogle Scholar
Vaughan, A. P. M. & Storey, B. C. 2000. The eastern Palmer Land shear zone: a new terrane accretion model for the Mesozoic development of the Antarctic Peninsula. Journal of the Geological Society, London 157, 1243–56.CrossRefGoogle Scholar
Whitehouse, M. J. & Kamber, B. 2005. Assigning dates to thin gneissic veins in high-grade metamorphic terranes: a cautionary tale from Akilia, southwest Greenland. Journal of Petrology 46, 291318.CrossRefGoogle Scholar