Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-29T05:27:21.533Z Has data issue: false hasContentIssue false

Graphene-Based All-Solid-State Supercapacitor with Ionic Liquid Gel Polymer Electrolyte

Published online by Cambridge University Press:  20 July 2012

G. P. Pandey
Affiliation:
Center for Autonomous Solar Power (CASP), Binghamton University, State University of New York, Binghamton, NY, 13902, USA
A. C. Rastogi
Affiliation:
Center for Autonomous Solar Power (CASP), Binghamton University, State University of New York, Binghamton, NY, 13902, USA Department of Electrical and Computer Engineering, Binghamton University, State University of New York, Binghamton, NY, 13902, USA
Get access

Abstract

Graphene-based all-solid-state supercapacitors the using ionic liquid gel polymer electrolyte have been fabricated and characterized. The gel polymer electrolyte has been prepared by immobilizing ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BMIBF4) with poly(vinylidene fluoride-hexafluoropropylene). Cyclic voltammetry studies show highly capacitive behavior under fast scan rates. Impedance analysis show nominal charge transfer and ion diffusion at pores related resistance contributions. The graphene-based solid-state supercapacitor shows optimum capacitance of 80 mF cm-2 (equivalent to the single electrode specific capacitance of 76 F g-1). This corresponded to the specific energy of 7.4 Wh kg-1 and specific power of 4.5 kW kg-1. The supercapacitor cell shows stable cyclic performances for up to 5000 cycles and possibly beyond.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Conway, B. E., Electrochemical Supercapacitors-Scientific Fundamentals and Technological Applications, Kluwer Academic/Plenum Publishers, New York (1999).Google Scholar
2. Frackowiak, E. and Beguin, F., Carbon 40, 1775 (2002).Google Scholar
3. Simon, P. and Gogotsi, Y., Nat. Mater. 7, 845 (2008).Google Scholar
4. Qu, D. and Shi, H., J. Power Sources 74, 99 (1998).Google Scholar
5. Pandey, G. P., Hashmi, S. A. and Kumar, Y., J. Electrochem. Soc. 157, A105 (2010).Google Scholar
6. Zhu, Y., Murali, S., Stoller, M. D., Ganesh, K. J., Cai, W., Ferreira, P. J., Pirkle, A., Wallace, R. M., Cychosz, K. A., Thommes, M., Su, D., Stach, E. A. and Ruoff, R. S., Science 332, 1537 (2011).Google Scholar
7. Liu, C., Yu, Z., Neff, D., Zhamu, A. and Jang, B. Z., Nano Lett. 10, 4863 (2010).Google Scholar
8. Kim, T. Y., Lee, H. W., Stoller, M., Dreyer, D. R., Bielawski, C. W., Ruoff, R. S. and Suh, K. S., ACS Nano 5, 436 (2011).Google Scholar
9. Agrawal, R. C. and Pandey, G. P., J. Phys. D: Appl. Phys. 41, 223001 (2008).Google Scholar
10. Armand, M., Endres, F., MacFarlane, D. R., Ohno, H. and Scrosati, B., Nat. Mater. 8, 621 (2009).Google Scholar