Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T10:30:08.473Z Has data issue: false hasContentIssue false

Implicit Contextual Learning in Prodromal and Early Stage Huntington's Disease Patients

Published online by Cambridge University Press:  29 May 2012

Marieke van Asselen*
Affiliation:
Visual Neuroscience Laboratory, IBILI, Faculty of Medicine, University of Coimbra, Portugal
Inês Almeida
Affiliation:
Visual Neuroscience Laboratory, IBILI, Faculty of Medicine, University of Coimbra, Portugal
Filipa Júlio
Affiliation:
Visual Neuroscience Laboratory, IBILI, Faculty of Medicine, University of Coimbra, Portugal Department of Neurology, University Hospital Coimbra, Portugal
Cristina Januário
Affiliation:
Department of Neurology, University Hospital Coimbra, Portugal
Elzbieta Bobrowicz Campos
Affiliation:
Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal
Mário Simões
Affiliation:
Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal
Miguel Castelo-Branco
Affiliation:
Visual Neuroscience Laboratory, IBILI, Faculty of Medicine, University of Coimbra, Portugal
*
Correspondence and reprint requests to: M. van Asselen, IBILI—Faculdade de Medicina, Azinhaga de Santa Comba—Celas, 3000-354 Coimbra. E-mail: masselen@fmed.uc.pt

Abstract

Huntington's disease (HD) is a genetic neurodegenerative disorder affecting the basal ganglia. These subcortical structures are particularly important for motor functions, response selection and implicit learning. In the current study, we have assessed prodromal and symptomatic HD participants with an implicit contextual learning task that is not based on motor learning, but on a purely visual implicit learning mechanism. We used an implicit contextual learning task in which subjects need to locate a target among several distractors. In half of the trials, the positions of the distractors and target stimuli were repeated. By memorizing this contextual information, attention can be guided faster to the target stimulus. Nine symptomatic HD participants, 16 prodromal HD participants and 22 control subjects were included. We found that the responses of the control subjects were faster for the repeated trials than for the new trials, indicating that their visual search was facilitated when repeated contextual information was present. In contrast, no difference in response times between the repeated and new trials was found for the symptomatic and prodromal HD participants. The results of the current study indicate that both prodromal and symptomatic HD participants are impaired on an implicit contextual learning task. (JINS, 2012, 18, 1–8)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beck, A.T., Ward, C.H., Mendelson, M., Mock, J., Erbaugh, J. (1961). An inventory for measuring depression. Archives of General Psychiatry, 4, 561571.CrossRefGoogle ScholarPubMed
Benton, A.L. (1974). Revised visual retention test (4th ed.). New York: Psychological Corporation.Google Scholar
Benton, A.L., Hamsher, K., Varney, N.R., Spreen, O. (1983). Contributions to neuropsychological assessment: A clinical manual. New York: Oxford University Press.Google Scholar
Berch, D.B., Krikorian, R., Huha, E.H. (1998). The Corsi Block-Tapping Task: Methodological and theoretical considerations. Brain and Cognition, 38, 317338.CrossRefGoogle ScholarPubMed
Cavaco, S., Pinto, C., Gonçalves, A., Gomes, F., Pereira, A., Malaquias, C. (2008). Auditory Verbal Learning Test: Dados normativos dos 21 aos 65 anos [Norms for 21–65 years old]. Psychologica, 49, 208221.Google Scholar
Chun, M.M. (2000). Contextual cueing of visual attention. Trends in Cognitive Sciences, 4(5), 170178.CrossRefGoogle ScholarPubMed
Chun, M.M., Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36, 2871.CrossRefGoogle ScholarPubMed
Chun, M.M., Phelps, E.A. (1999). Memory deficits for implicit contextual information in amnesic subjects with hippocampal damage. Nature Neuroscience, 2(9), 844847.CrossRefGoogle ScholarPubMed
Farrow, M., Churchyard, A., Chua, P., Bradshaw, J.L., Chiu, E., Georgiou-Karistianis, N. (2007). Attention, inhibition, and proximity to clinical onset in preclinical mutation carriers for Huntington's disease. Journal of Clinical and Experimental Neuropsychology, 29(3), 235246.CrossRefGoogle ScholarPubMed
Gabrieli, J.D.E., Stebbins, G.T., Singh, J., Willingham, D.B., Goetz, C.G. (1997). Intact mirror-tracing and impaired rotary-pursuit skill learning in patients with Huntington's disease: Evidence for dissociable memory systems in skill learning. Neuropsychology, 11(2), 272281.CrossRefGoogle ScholarPubMed
Ghilardi, M.F., Silvestri, G., Feigin, A., Mattis, P., Zgaljardic, D., Moisello, C., Eidelberg, D. (2008). Implicit and explicit aspects of sequence learning in pre-symptomatic Huntington's disease. Parkinsonism & Related Disorders, 14(6), 457464.CrossRefGoogle ScholarPubMed
Greene, J.A., Gross, W.L., Elsinger, C.L., Rao, S.M. (2007). Hippocampal differentiation without recognition: An fMRI analysis of the contextual cueing task. Learning & Memory, 10, 548553.CrossRefGoogle Scholar
Gómez-Ansón, B., Alegret, M., Muñoz, E., Monté, G.C., Alayrach, E., Tolosa, E. (2009). Prefrontal cortex volume reduction on MRI in preclinical Huntington's disease relates to visuomotor performance and CAG number. Parkinsonism & Related Disorders, 14(3), 213219.CrossRefGoogle Scholar
Halliday, G.M., McRitchie, D.A., Macdonald, V., Double, K.L., Trent, R.J., McCusker, E. (1998). Regional specificity of brain atrophy in Huntington's disease. Experimental Neurology, 154(2), 663672.CrossRefGoogle ScholarPubMed
Harris, G.J., Codori, A.M., Lewis, R.F., Schmidt, E., Bedi, A., Brandt, J. (1999). Reduced basal ganglia blood flow and volume in pre-symptomatic, gene-tested persons at-risk for Huntington's disease. Brain, 122, 16671678.CrossRefGoogle ScholarPubMed
Heindel, W.C., Salmon, D.P., Shults, C.W., Walicke, P.A., Butters, N. (1989). Neuropsychological evidence for multiple implicit memory systems: A comparison of Alzheimer's, Huntington's and Parkinson's disease patients. The Journal of Neuroscience, 92, 582587.CrossRefGoogle Scholar
Howard, J.H., Dennis, N.A., Howard, D.V., Yankovich, H., Vaidya, H.Y. (2004). Implicit spatial contextual learning in healthy aging. Neuropsychology, 18(1), 124134.CrossRefGoogle ScholarPubMed
Kessels, R.P., Van Zandvoort, M.J., Postma, A., Kappelle, L.J., De Haan, E.H. (2000). The Corsi Block-Tapping Task: Standardization and normative data. Applied Neuropsychology, 7, 252258.CrossRefGoogle ScholarPubMed
Kim, J.S., Reading, S.A., Brashers-Krug, T., Calhoun, V.D., Ross, C.A., Pearlson, G.D. (2004). Functional MRI study of a serial reaction time task in Huntington's disease. Psychiatry Research, 131, 2330.CrossRefGoogle ScholarPubMed
Kirkwood, S.C., Siemers, E., Hodes, M.E., Conneally, P.M., Christian, J.C., Foroud, T. (2000). Subtle changes among presymptomatic carriers of the Huntington's disease gene. Journal of Neurology, Neurosurgery, and Psychiatry, 69, 773779.CrossRefGoogle ScholarPubMed
Kirkwood, S.C., Siemers, E., Stout, J.C., Hodes, M.E., Conneally, P.M., Christian, J.C., Foroud, T. (1999). Longitudinal cognitive and motor changes among presymptomatic Huntington disease gene carriers. Archives of Neurology, 56(5), 563568.CrossRefGoogle ScholarPubMed
Lawrence, A.D., Hodge, J.R., Rosser, A.E., Kershaw, A., French-Constant, C., Rubinsztein, D.C., Sahakian, B.J. (1998). Evidence for specific cognitive deficits in preclinical Huntington's disease. Brain, 121, 13291341.CrossRefGoogle ScholarPubMed
Lemiere, J., Decruyenaere, M., Evers-Kieboms, G.E., Vandenbussche, E., Dom, R. (2004). Cognitive changes in patients with Huntington's disease (HD) and asymptomatic carriers of the HD mutation. Journal of Neurology, 251, 935942.CrossRefGoogle ScholarPubMed
Manns, J.R., Squire, L.R. (2001). Perceptual learning, awareness, and the hippocampus. Hippocampus, 11, 776782.CrossRefGoogle ScholarPubMed
Mattis, S., Jurica, P.J., Leitten, C.L. (2002). Dementia Rating Scale (DRS-2). Lutz, FL: Psychological Assessment Resources.Google Scholar
Negash, S., Boeve, B.F., Geda, Y.E., Smith, G.E., Knopman, D.S., Ivnik, R.J., Petersen, R.C. (2007). Neurocase, 13, 133143.CrossRefGoogle Scholar
Nopoulos, P.C., Aylward, E.H., Ross, C.A., Johnson, H.J., Magnotta, V.A., Juhl, A.R., Paulsen, J.S.; PREDICT-HD Investigators Coordinators of Huntington Study Group. (2010). Cerebral cortex structure in prodromal Huntington disease. Neurobiology of Disease, 40(3), 544554.CrossRefGoogle ScholarPubMed
Oldfield, R.C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97113.CrossRefGoogle ScholarPubMed
Osterrieth, P.A. (1944). “Filetest de copie d'une figure complex: Contribution a l’ étude de la perception et de la memoire [The test of copying a complex figure: A contribution to the study of perception and memory]”. Archives de Psychologie, 30, 286356.Google Scholar
Paulsen, J.S., Nopoulos, P.C., Aylward, E., Ross, C.A., Johnson, H., Magnotta, V.A., Nance, M.; PREDICT-HD Investigators and Coordinators of the Huntington's Study Group. (2010). Striatal and white matter predictors of estimated diagnosis for Huntington disease. Brain Research Bulletin, 31(82), 201207.CrossRefGoogle Scholar
Preston, A.R., Gabrieli, J.D. (2008). Dissociation between explicit memory and configural memory in the human medial temporal lobe. Cerebral Cortex, 18, 21922207.CrossRefGoogle ScholarPubMed
Raven, J.C., Raven, J., Court, J.H. (1993). Manual for Raven's progressive matrices and vocabulary scales. Oxford: Oxford Psychologists Press.Google Scholar
Rey, A. (1964). L'examen clinique en psychologie [Clinical assessment in psychology]. Paris: Presses Universitaires de France.Google Scholar
Rey, A. (1941). L'examen psychologique dans les cas d'encephalopathie traumatique. Arch Psychol, 28, 286340.Google Scholar
Robins Wahlin, T.B., Lundin, A., Dear, K. (2007). Early cognitive deficits in Swedish gene carriers of Huntington's disease. Neuropsychology, 21(1), 3144.CrossRefGoogle ScholarPubMed
Rosner, B. (2006). Fundamentals of bioststistics. Pacific Grove, CA: Duxbury Press.Google Scholar
Snowden, J.S., Craufurd, D., Thompson, J., Neary, D. (2002). Psychomotor, executive and memory function in preclinical Huntington's disease. Journal of clinical and experimental neuropsychology, 24(2), 133145.CrossRefGoogle ScholarPubMed
Stout, J.C., Paulsen, J.S., Queller, S., Solomon, A.C., Whitlock, K.B., Campbell, J.C., Aylward, E.H. (2011). Neurocognitive signs in prodromal Huntington disease. Neuropsychology, 25, 114.Google Scholar
Tabrizi, S.J., Langbehn, D.R., Leavitt, B.R., Roos, R.A., Durr, A., Craufurd, D., Stout, J.C., & TRACK-HD Investigators. (2009). Biological and clinical manifestations of Huntington's disease in the longitudinal TRACK-HD study: Cross-sectional analysis of baseline data. The Lancet, 8, 791801.CrossRefGoogle ScholarPubMed
Tabrizi, S.J., Scahill, R.I., Durr, A., Roos, R.A., Leavitt, B.R., Jones, R., Stout, J.C., & TRACK-HD Investigators. (2011). Biological and clinical changes in premanifest and early stage Huntington's disease in the TRACK-HD study: The 12-month longitudinal analysis. The Lancet, 10, 3142.CrossRefGoogle Scholar
The Huntington's Disease Collaborative Research Group. (1993). A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell, 72, 971983.CrossRefGoogle Scholar
Thieben, M.J., Duggins, A.J., Good, C.D., Gomes, L., Mahant, N., Richards, F., Frackowiak, R.S. (2002). The distribution of structural neuropathology in pre-clinical Huntington's disease. Brain, 125, 18151828.CrossRefGoogle ScholarPubMed
Van Asselen, M., Almeida, I., André, R., Januário, C., Freire Gonçalves, A., Castelo-Branco, M. (2009). The role of the basal ganglia in implicit contextual learning: A study of Parkinson's disease. Neuropsychologia, 47, 12691273.CrossRefGoogle ScholarPubMed
Vaz Serra, A., Pio Abreu, J.L. (1973a). Aferição dos quadros clínicos depressivos. I – Ensaio de aplicação do “Inventário Depressivo de Beck” a uma amostra portuguesa de doentes deprimidos. Coimbra Médica, XX, 623644.Google Scholar
Vaz Serra, A., Pio Abreu, J.L. (1973b). Aferição dos quadros clínicos depressivos. II – Estudo preliminar de novos agrupamentos sintomatológicos para complemento do “Inventário Depressivo de Beck”. Coimbra Médica, XX, 713736.Google Scholar
Wechsler, D. (1997). WAIS-III: Administration and scoring manual. San Antonio, TX: The Psychological Corporation.Google Scholar
Wechsler, D. (2008). WAIS-III: Escala de Inteligência de Wechlser para Adultos -3.ª edição: Manual [Wechsler Adult Intelligence Scale (WAIS-III)]. Lisboa: Cegoc.Google Scholar
Witjes-Ané, M.N., Mertens, B., van Vugt, J.P., Bachoud-Lévi, A.C., van Ommen, G.J., Roos, R.A. (2007). Longitudinal Evaluation of “Presymptomatic” Carriers of Huntington's Disease. The Journal of Neuropsychiatry and Clinical Neuroscience, 19(3), 310317.CrossRefGoogle ScholarPubMed
Wolf, R.C., Vasic, N., Schönfeldt-Lecuona, C., Landwehrmeyer, G.B., Ecker, D. (2007). Dorsolateral prefrontal cortex dysfunction in presymptomatic Huntington's disease: Evidence from event-related fMRI. Brain, 130, 28452857.CrossRefGoogle ScholarPubMed