Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-19T13:29:26.415Z Has data issue: false hasContentIssue false

Magneto-seismology of solar atmospheric loops by means of longitudinal oscillations

Published online by Cambridge University Press:  05 July 2012

M. Luna-Cardozo
Affiliation:
Instituto de Astronomía y Física del Espacio (IAFE), CONICET-UBA, CC. 67, Suc. 28, 1428 Buenos Aires, Argentina. email: mluna@iafe.uba.ar Solar Physics and Space Plasma Research Centre (SP2RC), University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK. email: robertus@sheffield.ac.uk
G. Verth
Affiliation:
School of Computing, Engineering and Information Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK. email: gary.verth@northumbria.ac.uk
R. Erdélyi
Affiliation:
Solar Physics and Space Plasma Research Centre (SP2RC), University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK. email: robertus@sheffield.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

There is increasingly strong observational evidence that slow magnetoacoustic modes arise in the solar atmosphere. Solar magneto-seismology is a novel tool to derive otherwise directly un-measurable properties of the solar atmosphere when magnetohydrodynamic (MHD) wave theory is compared to wave observations. Here, MHD wave theory is further developed illustrating how information about the magnetic and density structure along coronal loops can be determined by measuring the frequencies of the slow MHD oscillations. The application to observations of slow magnetoacoustic waves in coronal loops is discussed.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Dymova, M. V. & Ruderman, M. S. 2006, A&A, 457, 1059Google Scholar
Erdélyi, R., Luna-Cardozo, M., & Mendoza-Briceño, C. A. 2008, Sol. Phys., 252, 305CrossRefGoogle Scholar
Klimchuk, J. A. 2000, Sol. Phys., 193, 53CrossRefGoogle Scholar
Lin, H., Khun, J. R., & Coulter, R. 2004, ApJ, 613, L177CrossRefGoogle Scholar
Luna-Cardozo, M., Verth, G., & Erdélyi, R. 2012, ApJ, 748, 110CrossRefGoogle Scholar
Mendoza-Briceño, C. A., Erdélyi, R., & Sigalotti, L. Di G. 2004, ApJ, 605, 493CrossRefGoogle Scholar
Roberts, B., Edwin, P. M., & Benz, A. O. 1984, ApJ, 279, 857CrossRefGoogle Scholar
Sigalotti, L. Di G., Mendoza-Briceño, C. A., & Luna-Cardozo, M. 2007, Sol. Phys., 246, 187CrossRefGoogle Scholar
Srivastava, A. K. & Dwivedi, B. N. 2010, New Astron., 15, 8CrossRefGoogle Scholar
Verth, G. 2007, Astron. Nachr., 328, 764CrossRefGoogle Scholar
Verth, G. & Erdélyi, R. 2008, A&A, 486, 1015Google Scholar
Wang, T. J. 2011, Space Sci. Rev., 158, 397CrossRefGoogle Scholar
Watko, J. A. & Klimchuk, J. A. 2000, Sol. Phys., 193, 77CrossRefGoogle Scholar