Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T16:23:46.463Z Has data issue: false hasContentIssue false

Determination of leucine metabolism and protein turnover in sheep, using gas–liquid chromatography–mass spectrometry

Published online by Cambridge University Press:  09 March 2007

C. R. Krishnamurti
Affiliation:
Department of Animal Science, University of British Columbia, Vancouver, B.C. V6T 2A2, Canada
S. M. Janssens
Affiliation:
Department of Animal Science, University of British Columbia, Vancouver, B.C. V6T 2A2, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Whole-body protein synthetic rates in non-pregnant ewes were determined by the continuous infusion of L-[15N]- and [1-13C]leucine and measuring the plasma enrichment of leucine, α-ketoisocaproate (α-KIC) and expired carbon dioxide by gas–liquid chromatography–mass spectrometry.

2. The mean whole-body protein synthesis estimated from plasma leucine flux corrected for oxidation was 5·38 (SE 0·54) g/kg per d.

3. Under the conditions of the present study leucine oxidation was 0·323 (SE 0·067) mmol/kg per d and accounted for 10·71 (SE 2·26) % of plasma [13C]leucine flux. Deamination of leucine was 0·55 (SE 0·035) mmol/kg per d and accounted for approximately 17% of plasma [15N]leucine flux.

4. The rate of α-KIC reamination to leucine, calculated by subtracting 13C flux from 15N flux, was 0·228 (SE 0·101) mmol/kg per d.

5. The rate of whole-body protein degradation was 4·49 (SE 0·54) g/kg per d and there was a net protein gain of 0·89 (SE 0·21) g/kg per d.

Type
General Nutrition papers
Copyright
Copyright © The Nutrition Society 1988

References

Adams, F. R. (1974). Journal of Chromatography 57, 189212.CrossRefGoogle Scholar
Brockway, J. M. & Lobley, G. E. (1982). European Association of Animal Production Publication no. 29, 124127.Google Scholar
Bryant, D. T. W. & Smith, R. W. (1982 a). Journal of Agricultural Science, Cambridge 98, 639643.CrossRefGoogle Scholar
Bryant, D. T. W. & Smith, R. W. (1982 b). Journal of Agricultural Science, Cambridge 99, 319323.CrossRefGoogle Scholar
Campbell, I. M. (1974). Bioorganic Chemistry 3, 386397.CrossRefGoogle Scholar
Cree, T. C., Hutson, S. M. & Harper, A. E. (1979). Analytical Biochemistry 92, 156163.CrossRefGoogle Scholar
Davis, S. R., Barry, T. N. & Hughson, G. A. (1981). British Journal of Nutrition 46, 409419.CrossRefGoogle Scholar
Garlick, P. J., McNurlan, M. A., McHardy, K. C., Calder, A. G., Milne, E., Fearns, L. M. & Broom, J. (1987). Human Nutrition: Clinical Nutrition 41C, 177191.Google Scholar
Hammond, A. C., Huntington, G. B., Reynolds, P. J., Tyrrell, H. F. & Eisemann, J. H. (1987). Journal of Animal Science 64, 420425.CrossRefGoogle Scholar
Hayashi, T., Tsuchiya, H., Todoriki, H. & Naruse, H. (1982). Analytical Biochemistry 122, 173179.CrossRefGoogle Scholar
Krishnamurti, C. R., Heindze, A. M. & Galzy, G. (1984). Journal of Chromatography 315, 321331.CrossRefGoogle Scholar
Krishnamurti, C. R. & Schaefer, A. L. (1984). Canadian Journal of Animal Science 64, 120121.CrossRefGoogle Scholar
Krishnamurti, C. R. & Schaefer, A. L. (1987). Nutrition Reports International 35, 683692.Google Scholar
MacRae, J. C. & Ulyatt, M. J. (1974). Journal of Agricultural Science, Cambridge 82, 309319.CrossRefGoogle Scholar
Matthews, D. E., Ben-Galim, E. & Bier, D. M. (1979). Analytical Chemistry 51, 8084.CrossRefGoogle Scholar
Matthews, D. E. & Bier, D. M. (1983). Annual Review of Nutrition 3, 309339.CrossRefGoogle Scholar
Matthews, D. E., Bier, D. M., Rennie, M. J., Edwards, R. H. T., Halliday, D., Millward, D. J. & Clugston, G. A. (1981). Science 214, 11291131.CrossRefGoogle Scholar
Nissen, S. L. & Ostaszewski, P. (1985). British Journal of Nutrition 54, 705712.Google Scholar
Nissen, S. L., Van Huysen, C. & Haymond, M. W. (1982). Journal of Chromatography 232, 170175.CrossRefGoogle Scholar
Reeds, P. J. & Harris, C. I. (1981). In Nitrogen Metabolism in Man, pp. 391408 [Waterlow, J. C. and Stephen, J. M., editors]. London: Applied Science Publishers.Google Scholar
Schoeller, D. A., Brown, C., Sakamura, K., Nakagawa, A., Mazzeo, R. S., Brooks, G. A. & Budinger, T. F. (1984). Biomedical Mass Spectrometry 11, 557561.CrossRefGoogle Scholar
Tessari, P., Tsalikian, E., Schwenk, W. F., Nissen, S. L. & Haymond, M. W. (1985). American Journal of Physiology 249, E121E130.Google Scholar
Tsalikian, E., Howard, C., Gerich, J. E. & Haymond, M. W. (1984). American Journal of Physiology 247, E323E327.Google Scholar
Tserng, K. & Kalhan, S. C. (1983). American Journal of Physiology 245, E308E311.Google Scholar
Waterlow, J. C., Garlick, P. J. & Millward, D. J. (1978). Protein Turnover in Mammalian Tissues and in the Whole Body. Amsterdam: North Holland.Google Scholar
Wijayasinghe, M. S., Thompson, J. R. & Milligan, L. P. (1984). Canadian Journal of Animal Science 64 Suppl., 283284.CrossRefGoogle Scholar
Wolff, J. E., Bergman, E. N. & Williams, H. H. (1972). American Journal of Physiology 223, 438446.CrossRefGoogle Scholar
Wolfe, R. R., Goodenough, R. D., Burke, J. F. & Wolfe, M. H. (1983). Annals of Surgery 197, 163171.CrossRefGoogle Scholar
Wolfe, R. R., Goodenough, R. D., Wolfe, M. H., Royle, G. T. & Nadel, E. R. (1982). Journal of Applied Physiology 52, 458466.CrossRefGoogle Scholar
Wolfe, R. R., Wolfe, M. H., Nadel, E. R. & Shaw, J. H. F. (1984). Journal of Applied Physiology 56, 221229.CrossRefGoogle Scholar