Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-18T03:57:30.171Z Has data issue: false hasContentIssue false

Phase transformations in nanocomposite ZrAlN thin films during annealing

Published online by Cambridge University Press:  30 May 2012

Lina Rogström*
Affiliation:
Nanostructured Materials, Department of Physics, Chemistry, and Biology (IFM), Linköping University, S-581 83 Linköping, Sweden
Mats Ahlgren
Affiliation:
Sandvik Tooling AB, 126 80 Stockholm, Sweden
Jonathan Almer
Affiliation:
Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439
Lars Hultman
Affiliation:
Thin Film Physics, Department of Physics, Chemistry, and Biology (IFM), Linköping University, S-581 83 Linköping, Sweden
Magnus Odén
Affiliation:
Nanostructured Materials, Department of Physics, Chemistry, and Biology (IFM), Linköping University, S-581 83 Linköping, Sweden
*
a)Address all correspondence to this author. e-mail: linro@ifm.liu.se
Get access

Abstract

Nanocomposite Zr0.52Al0.48N1.11 thin films consisting of crystalline grains surrounded by an amorphous matrix were deposited using cathodic arc evaporation. The structure evolution after annealing of the films was studied using high-energy x-ray scattering and transmission electron microscopy. The mechanical properties were characterized by nanoindentation on as-deposited and annealed films. After annealing in temperatures of 1050–1400 °C, nucleation and grain growth of cubic ZrN takes place in the film. This increases the hardness, which reaches a maximum, while parts of the film remain amorphous. Grain growth of the hexagonal AlN phase occurs above 1300 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Veprek, S. and Reiprich, S.: A concept for the design of novel superhard coatings. Thin Solid Films 268(1–2), 64 (1995).CrossRefGoogle Scholar
2.Veprek, S., Niederhofer, A., Moto, K., Bolom, T., Männling, H.D., Nesladek, P., Dollinger, G., and Bergmaier, A.: Composition, nanostructure and origin of the ultrahardness in nc-TiN/a-Si3N4/a- and nc-TiSi2 nanocomposites with HV=80 to ≥105 GPa. Surf. Coat. Technol. 133134, 152 (2000).CrossRefGoogle Scholar
3.Ma, D., Ma, S., and Xu, K.: Superhard nanocomposite Ti-Si-C-N coatings prepared by pulsed-d.c. plasma enhanced CVD. Surf. Coat. Technol. 200, 382 (2005).Google Scholar
4.Guo, Y., Ma, S., and Xu, K.: Effects on carbon content and annealing temperature on the microstructure and hardness of super hard Ti-Si-C-N nanocomposite coatings prepared by pulsed d.c. PCVD. Surf. Coat. Technol. 201, 5240 (2007).CrossRefGoogle Scholar
5.Winkelmann, A., Cairney, J.M., Hoffman, M.J., Martin, P.J., and Bendavid, A.: Zr-Si-N films fabricated using hybrid cathodic arc and chemical vapour deposition: Structure vs. properties. Surf. Coat. Technol. 200(14–15), 4213 (2006).CrossRefGoogle Scholar
6.Mitterer, C., Losbichler, P., Hofer, F., Warbichler, P., Gibson, P.N., and Gissler, W.: Nanocrystalline hard coatings within the quasi-binary system TiN-TiB2. Vacuum 50(3–4), 313 (1998).CrossRefGoogle Scholar
7.Karvankova, P., Veprek-Heijman, M.G.J., Zindulka, O., Bergmaier, A., and Veprek, S.: Superhard nc-TiN/a-BN and nc-TiN/a-TiBx/a-BN coatings prepared by plasma CVD and PVD: A comparative study of their properties. Surf. Coat. Technol. 163164(0), 149 (2003).CrossRefGoogle Scholar
8.Männling, H.-D., Patil, D.S., Moto, K., Jilek, M., and Veprek, S.: Thermal stability of superhard nanocomposite coatings consisting of immiscible nitrides. Surf. Coat. Technol. 146147, 263 (2001).CrossRefGoogle Scholar
9.Koehler, J.S.: Attempt to design a strong solid. Phys. Rev. B 2(2), 547 (1970).CrossRefGoogle Scholar
10.Helmersson, U., Todorova, S., Barnett, S.A., Sundgren, J.E., Markert, L.C., and Greene, J.E.: Growth of single-crystal TiN/VN strained-layer superlattices with extremely high mechanical hardness. J. Appl. Phys. 62(2), 481 (1987).CrossRefGoogle Scholar
11.Söderberg, H., Odén, M., Molina-Aldareguia, J.M., and Hultman, L.: Nanostructure formation during deposition of TiN/SiNx nanomultilayer films by reactive dual magnetron sputtering. J. Appl. Phys. 97(11), 114327 (2005).CrossRefGoogle Scholar
12.Mayrhofer, P.H., Hörling, A., Karlsson, L., Mitterer, C., and Hultman, L.: Self-organized nanostructures in the Ti-Al-N system. Appl. Phys. Lett. 83(10), 2049 (2003).CrossRefGoogle Scholar
13.Hörling, A., Hultman, L., Odén, M., Sjölén, J., and Karlsson, L.: Mechanical properties and machining performance of Ti1-xAlxN-coated cutting tools. Surf. Coat. Technol. 191(2–3), 384 (2005).CrossRefGoogle Scholar
14.Knutsson, A., Johansson, M.P., Persson, P.O.Å., Hultman, L., and Odén, M.: Thermal decomposition products in arc evaporated TiAlN/TiN multilayers. Appl. Phys. Lett. 93, 143110 (2008).CrossRefGoogle Scholar
15.Tasnádi, F., Abrikosov, I.A., Rogström, L., Almer, J., Johansson, M.P., and Odén, M.: Significant elastic anisotropy in Ti1-xAlxN alloys. Appl. Phys. Lett. 97, 231902 (2010).CrossRefGoogle Scholar
16.Flink, A., Andersson, J.M., Alling, B., Daniel, R., Sjölén, J., Karlsson, L., and Hultman, L.: Structure and thermal stability of arc evaporated (Ti0.33Al0.67)1-xSixN thin films. Thin Solid Films 517(2), 714 (2008).CrossRefGoogle Scholar
17.Johnson, L.J.S., Rogström, L., Johansson, M.P., Odén, M., and Hultman, L.: Microstructure evolution and age hardening in (Ti, Si)(C, N) thin films deposited by cathodic arc evaporation. Thin Solid Films 519, 1397 (2010).CrossRefGoogle Scholar
18.Mayrhofer, P.H., Stoiber, M., and Mitterer, C.: Age hardening of PACVD TiBN thin films. Scr. Mater. 53(2), 241 (2005).CrossRefGoogle Scholar
19.Lind, H., Forsén, R., Alling, B., Ghafoor, N., Tasnádi, F., Johansson, M.P., Abrikosov, I.A., and Odén, M.: Improving thermal stability of hard coating films via a concept of multicomponent alloying. Appl. Phys. Lett. 99, 091903 (2011).CrossRefGoogle Scholar
20.Hasegawa, H., Kawate, M., and Suzuki, T.: Effects of Al contents on microstructures of Cr1-xAlxN and Zr1-xAlxN films synthesized by cathodic arc method. Surf. Coat. Technol. 200, 2409 (2005).CrossRefGoogle Scholar
21.Lamni, R., Sanjinés, R., Parlinska-Wojtan, M., Karimi, A., and Lévy, F.: Microstructure and nanohardness properties of Zr-Al-N and Zr-Cr-N thin films. J. Vac. Sci. Technol., A 23(4), 593 (2005).CrossRefGoogle Scholar
22.Rogström, L., Johnson, L.J.S., Johansson, M.P., Ahlgren, M., Hultman, L., and Odén, M.: Age hardening in arc-evaporated ZrAlN thin films. Scr. Mater. 62, 739 (2010).CrossRefGoogle Scholar
23.Rogström, L., Johnson, L.J.S., Johansson, M.P., Ahlgren, M., Hultman, L., and Odén, M.: Thermal stability and mechanical properties of arc evaporated ZrN/ZrAlN multilayers. Thin Solid Films 519, 694 (2010).CrossRefGoogle Scholar
24.Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564 (1992).CrossRefGoogle Scholar
25.Almer, J., Lienert, U., Peng, R.L., Schlauer, C., and Odén, M.: Strain and texture analysis of coatings using high-energy x-rays. J. Appl. Phys. 94(1), 697 (2003).CrossRefGoogle Scholar
26.Brik, M.G. and Ma, C.G.: First-principles studies of the electronic and elastic properties of metal nitrides XN (X=Cs, Ti, V, Cr, Zr, Nb). Comp. Mat. Sci. 51, 380 (2012).CrossRefGoogle Scholar
27.Jemian, P.R., Weertman, J.R., Long, G.G., and Spal, R.D.: Characterization of 9Cr-1MoVNb steel by anomalous small-angle x-ray scattering. Acta Metall. Mater. 39(11), 2477 (1991).CrossRefGoogle Scholar
28.Ilavsky, J. and Jemian, P.R.: Irena: Tool suite for modeling and analysis of small-angle scattering. J. Appl. Crystallogr. 42(2), 347 (2009).CrossRefGoogle Scholar
29.Al3Zr, PDF No. 48-1385, JCPDS - International Centre for Diffraction Data. (1998).Google Scholar
30.Al3Zr4, PDF No. 48-1381, JCPDS - International Centre for Diffraction Data. (1998).Google Scholar
31.Petrov, I., Barna, P.B., Hultman, L., and Greene, J.E.: Microstructural evolution during film growth. J. Vac. Sci. Technol., A 21(5), S117 (2003).CrossRefGoogle Scholar
32.Diserens, M., Patscheider, J., and Lévy, F.: Improving the properties of titanium nitride by incorporation of silicon. Surf. Coat. Technol. 108109(1–3), 241 (1998).CrossRefGoogle Scholar
33.Patscheider, J., Zehnder, T., and Diserens, M.: Structure-performance relations in nanocomposite coatings. Surf. Coat. Technol. 146147, 201 (2001).CrossRefGoogle Scholar
34.Sandu, C.S., Medjani, F., Sanjinés, R., Karimi, A., and Lévy, F.: Structure, morphology and electrical properties of sputtered Zr-Si-N thin films: From solid solution to nanocomposite. Surf. Coat. Technol. 201(7), 4219 (2006).CrossRefGoogle Scholar
35.Anders, A.: Cathodic Arcs, From Fractal Spots to Energetic Condensation (Springer Series, New York, NY, 2008).CrossRefGoogle Scholar
36.Yee, D.S., Cuomo, J.J., Frisch, M.A., and Smith, D.P.E.: Reactive radio frequency sputter deposition of higher nitrides of titanium, zirconium, and hafnium. J. Vac. Sci. Technol., A 4(3), 381 (1986).CrossRefGoogle Scholar
37.Perry, A.J.: On the existence of point defects in physical vapor deposited films of TiN, ZrN, and HfN. J. Vac. Sci. Technol., A 6(3), 2140 (1988).CrossRefGoogle Scholar
38.Dauchot, J.P., Edart, S., Wautelet, M., and Hecq, M.: Synthesis of zirconium nitride films monitored by in situ soft x-ray spectrometry. Vacuum 46(8–10), 927 (1995).CrossRefGoogle Scholar
39.Pichon, L., Girardeau, T., Straboni, A., Lignou, F., Guérin, P., and Perrière, J.: Zirconium nitrides deposited by dual ion beam sputtering: Physical properties and growth modelling. Appl. Surf. Sci. 150(1–4), 115 (1999).CrossRefGoogle Scholar
40.Benia, H.M., Guemmaz, M., Schmerber, G., Mosser, A., and Parlebas, J.-C.: Investigations on non-stoichiometric zirconium nitrides. Appl. Surf. Sci. 200, 231 (2002).CrossRefGoogle Scholar
41.Spillmann, H., Willmott, P.R., Morstein, M., and Uggowitzer, P.J.: ZrN, ZrxAlyN and ZrxGayN thin films - novel materials for hard coatings grown using pulsed laser deposition. Appl. Phys. A 73, 441 (2001).CrossRefGoogle Scholar
42.Ruan, J.-L., Huang, J.-L., Chen, J.S., and Lii, D.-F.: Effects of substrate bias on the reactive sputtered Zr-Al-N diffusion barrier films. Surf. Coat. Technol. 200, 1652 (2005).CrossRefGoogle Scholar
43.Toth, L.E.: Transition Metal Carbides and Nitrides (Academic Press, New York, 1971).Google Scholar
44.Uhrenius, B.: Evaluation of molar volumes in the Co-W-C system and calculation of volume fractions of phases in cemented carbides. Int. J. Refract. Met. Hard Mater. 12, 121 (1994).CrossRefGoogle Scholar
45.Gruss, K.A., Zheleva, T., Davis, R.F., and Watkins, T.R.: Characterization of zirconium nitride coatings deposited by cathodic arc sputtering. Surf. Coat. Technol. 107, 115 (1998).CrossRefGoogle Scholar
46.Niu, E.W., Li, L., Lv, G.H., Chen, H., Feng, W.R., Fan, S.H., Yang, S.Z., and Yang, X.Z.: Influence of substrate bias on the structure and properties of ZrN films deposited by cathodic vacuum arc. Mater. Sci. Eng., A 460461, 135 (2007).CrossRefGoogle Scholar
47.Mayrhofer, P.H., Tischler, G., and Mitterer, C.: Microstructure and mechanical/thermal properties of Cr-N coatings deposited by reactive unbalanced magnetron sputtering. Surf. Coat. Technol. 142144, 78 (2001).CrossRefGoogle Scholar
48.Tung, H.-M., Huang, J.-H., Tsai, D.-G., Ai, C.-F., and Yu, G.-P.: Hardness and residual stress in nanocrystalline ZrN films: Effect of bias voltage and heat treatment. Mater. Sci. Eng., A 500(1–2), 104 (2009).CrossRefGoogle Scholar
49.Siegel, R.W. and Fougere, G.E.: Mechanical properties of nanophase metals. Nanostruct. Mater. 6(1–4), 205 (1995).CrossRefGoogle Scholar
50.Schiotz, J., Di Tolla, F.D., and Jacobsen, K.W.: Softening of nanocrystalline metals at very small grain sizes. Nature 391(6667), 561 (1998).CrossRefGoogle Scholar
51.Rester, M., Neidhardt, J., Eklund, P., Emmerlich, J., Ljungcrantz, H., Hultman, L., and Mitterer, C.: Annealing studies of nanocomposite Ti-Si-C thin films with respect to phase stability and tribological performance. Mater. Sci. Eng., A 429(1–2), 90 (2006).CrossRefGoogle Scholar
52.Kim, H.S. and Bush, M.B.: The effects of grain size and porosity on the elastic modulus of nanocrystalline materials. Nanostruct. Mater. 11(3), 361 (1999).CrossRefGoogle Scholar
53.Török, E., Perry, A.J., Chollet, L., and Sproul, W.D.: Young’s modulus of TiN, TiC, ZrN and HfN. Thin Solid Films 153(1–3), 37 (1987).CrossRefGoogle Scholar
54.Perry, A.J.: A contribution to the study of Poisson’s ratios and elastic constants of TiN, ZrN and HfN. Thin Solid Films 193/194, 463 (1990).CrossRefGoogle Scholar
55.Gerlich, D., Dole, S.L., and Slack, G.A.: Elastic properties of aluminium nitride. J. Phys. Chem. Solids 47(5), 437 (1986).CrossRefGoogle Scholar
56.Mortet, V., Nesladek, M., Haenen, K., Morel, A., D’Olieslaeger, M., and Vanecek, M.: Physical properties of polycrystalline aluminium nitride films deposited by magnetron sputtering. Diamond Relat. Mater. 13 (4–8), 1120 (2004).CrossRefGoogle Scholar