Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T05:38:49.090Z Has data issue: false hasContentIssue false

Crystal and powder XRD data of Mg3(PO4)2-III: High-temperature and high-pressure form

Published online by Cambridge University Press:  10 January 2013

F. Brunet
Affiliation:
Bayerisches Geoinstitut, Universität Bayreuth, 95440 Bayreuth, Germany and Laboratoire de Géologie, CNRS-URA 1316, Ecole normale supérieure, 24 rue Lhomond, 75005 Paris, France
C. Chopin
Affiliation:
Laboratoire de Géologie, CNRS-URA 1316, Ecole normale supérieure, 24 rue Lhomond, 75005 Paris, France
A. Elfakir*
Affiliation:
Laboratoire de Cristallochimie du Solide, CNRS-URA 1388, Université P. et M. Curie, 4 place Jussieu, 75252 Paris Cedex 05, France
M. Quarton
Affiliation:
Laboratoire de Cristallochimie du Solide, CNRS-URA 1388, Université P. et M. Curie, 4 place Jussieu, 75252 Paris Cedex 05, France
*
a)Author to whom correspondence should be addressed.

Abstract

A new diffraction pattern of the high-temperature and high-pressure polymorph Mg3(PO4)2-III (PDF 43-500) is given and indexed on the basis of a single-crystal structure refinement. It allows diffractogram indexing of the isostructural high-temperature and high-pressure form of Co3(PO4)2 (PDF 43-499).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Annersten, H., and Nord, A. G. (1980). “A high pressure phase of magnesium orthophosphate,” Acta Chem. Scand. A 34, 389390.CrossRefGoogle Scholar
Berthet, G., Joubert, J. C., and Bertaut, E. F. (1972). “Vacancies ordering in new metastable orthophosphates Co3⌧P2O8 and Mg3⌧P2O8 with olivine related structure,” Z. Krist. 1365, 98105.Google Scholar
Boyd, F. R., and England, J. L. (1960). “Apparatus for equilibrium measurements at pressures up to 50 kb and temperature to 1750 °C,” J. Geophys. Res. 65, 741748.CrossRefGoogle Scholar
Brunet, F., Chopin, C., and Seifert, F. (1995). “Phase relations in the MgO–P2O5–H2O system and stability of ellenbergerite-(P),” Contrib. Mineral. Petrol, (submitted).Google Scholar
Calvo, C. (1963). “The crystal structure and luminescence of γ-zinc orthophosphate,” J. Phys. Chem. Solids 24, 141149.CrossRefGoogle Scholar
Calvo, C. (1968). “The crystal structures of some divalent metal ion phosphates,” Bull. Soc. Chim. Fr., 17441747.Google Scholar
de Wolff, P. M. (1968). “A simplified criterion for the reliability of powder-pattern indexing,” J. Appl. Cryst. 1, 108109.CrossRefGoogle Scholar
Dragoo, A. L. (1990). “Methods & practices in X-ray powder diffraction,” JCPDS 6.1, 16.Google Scholar
Fuchs, L. H., and Olsen, E. (1973). “New X-ray and compositional data for farringtonite, Am. Mineral. 58, 949951.Google Scholar
Jaulmes, S., Brunet, F., Chopin, C., Elfakir, A., and Quarton, M. (1995). “Crystal structure of Mg3(PO4)2-III,” J. Solid State Chem. (submitted).Google Scholar
Mighell, A. D., Hubbard, C. R., and Stalick, J. K. (1981). “NBS*AIDS 83 is a development of NBS*AIDS 80: A FORTRAN program for crystallographic data evaluation,” Natl. Bur. Stand. (U.S.) Tech. Note 1141.CrossRefGoogle Scholar
Moore, P. B. (1972). “Sarcopside: Its atomic arrangement,” Am. Mineral. 57, 2435.Google Scholar
Nord, A. G., and Kierkegaard, P. (1968). “The crystal structure of Mg3(PO4)2,” Acta Chem. Scand. 22, 14661474.CrossRefGoogle Scholar
Smith, G. J., and Snyder, R. L. (1979). “FN: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Cryst. 12, 6065.CrossRefGoogle Scholar
Theodoret, M., Lenzi, J., Roux, P., Bonel, G., and Lenzi, M. (1987). “Comportement sous haute pression d'orthophosphates mixtes de calcium et de cobalt,” Rev. Chim. Minér. 24, 478488.Google Scholar