Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T11:31:13.593Z Has data issue: false hasContentIssue false

Melting Temperatures and Thermal Conductivities of Corium Prepared from UO2 and Zircaloy-2

Published online by Cambridge University Press:  22 May 2012

Masato Kato
Affiliation:
Advanced Nuclear System Research and Development Directorate, Japan Atomic Energy Agency, 4-33, Muramastu, Tokai-mura, Ibaraki, 311-1194, Japan
Teppei Uchida
Affiliation:
Advanced Nuclear System Research and Development Directorate, Japan Atomic Energy Agency, 4-33, Muramastu, Tokai-mura, Ibaraki, 311-1194, Japan
Shun Hirooka
Affiliation:
Advanced Nuclear System Research and Development Directorate, Japan Atomic Energy Agency, 4-33, Muramastu, Tokai-mura, Ibaraki, 311-1194, Japan
Masatoshi Akashi
Affiliation:
Advanced Nuclear System Research and Development Directorate, Japan Atomic Energy Agency, 4-33, Muramastu, Tokai-mura, Ibaraki, 311-1194, Japan
Akira Komeno
Affiliation:
Advanced Nuclear System Research and Development Directorate, Japan Atomic Energy Agency, 4-33, Muramastu, Tokai-mura, Ibaraki, 311-1194, Japan
Kyoichi Morimoto
Affiliation:
Advanced Nuclear System Research and Development Directorate, Japan Atomic Energy Agency, 4-33, Muramastu, Tokai-mura, Ibaraki, 311-1194, Japan
Get access

Abstract

Corium which simulates the molten core of a Boiling Water Reactor was prepared as a parameter of Zr content, and melting temperatures and thermal conductivities were measured. The melting temperatures were measured by the thermal arrest method and were 2622 oC, 2509 oC and 2540 oC, respectively, in the specimens of 24.3 at%, 49.0 at% and 73.5 at% Zr content. Thermal conductivities had low values of 2.0-3.5 W/m oC at temperatures of 400 to 1600 oC.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hobbins, R. R., Petti, D. A., Osetek, D. J. and Hagrman, D. L., Nucl.Tech. 95, 287, (1991).Google Scholar
2. Hofmann, P., J. Nucl. Mater. 270, 194 (1999).Google Scholar
3. Nagase, F. and Uetsuka, H., J. Nucl. Sci. Tech. 49, 1, 96 (2012).Google Scholar
4. Cohen, I. and Schaner, B. E., J. Nucl. Mater. 9, 1, 18(1963).Google Scholar
5. Lambertson, W. A. and Mueller, M. H., J. Amer. Cer. Soc. 36, 11, 365(1953).Google Scholar
6. Brrachin, M., Cheynet, P. Y. and Fischer, E., J. Nucl. Mater. 375, 397(2008).Google Scholar
7. Kato, M., Morimoto, K., Sugata, H., Konashi, K., Kashimura, M. and Abe, T., J. Alloys and Comp. 452, 48 (2008).Google Scholar
8. Morimoto, K., Kato, M., Ogasawara, M., Kashimura, M. and Abe, T., J. Alloys and Comp. 452, 54 (2008).Google Scholar
9. Hirooka, S., Akashi, M., Kato, M., Sunaoshi, T., Uno, H. and Morimoto, K., to be presented at MRS 2012 Spring meeting (2012).Google Scholar
10. Carbajo, J. J., Yoder, G. L., Popov, S. G., and Ivanov, V. K., J. Nucl. Mater. 116, 181 (2001)Google Scholar
11. Chase, N. W. Jr., NIST JANAF Thermochemical Tables, J. Phys. Chem. Ref. Data (1998)Google Scholar