Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-28T19:17:58.351Z Has data issue: false hasContentIssue false

Electrical and structural properties of ABO3/SrTiO3 interfaces

Published online by Cambridge University Press:  18 May 2012

A. Kalabukhov
Affiliation:
Dept. Microtechn. and Nanosci. (MC2), Chalmers Univ. Techn., 41296 Gothenburg, Sweden Skobeltsyn Inst. Nuclear Physics, Dept Physics, Moscow State Univ., 119899 Moscow, Russia
T. Claeson
Affiliation:
Dept. Microtechn. and Nanosci. (MC2), Chalmers Univ. Techn., 41296 Gothenburg, Sweden
P.P. Aurino
Affiliation:
Dept. Microtechn. and Nanosci. (MC2), Chalmers Univ. Techn., 41296 Gothenburg, Sweden
R. Gunnarsson
Affiliation:
Dept. Microtechn. and Nanosci. (MC2), Chalmers Univ. Techn., 41296 Gothenburg, Sweden
D. Winkler
Affiliation:
Dept. Microtechn. and Nanosci. (MC2), Chalmers Univ. Techn., 41296 Gothenburg, Sweden
E. Olsson
Affiliation:
Department of Applied Physics, Chalmers Univ. Techn., SE-41296 Gothenburg, Sweden
N. Tuzla
Affiliation:
Department of Applied Physics, Chalmers Univ. Techn., SE-41296 Gothenburg, Sweden
J. Börjesson
Affiliation:
Department of Applied Physics, Chalmers Univ. Techn., SE-41296 Gothenburg, Sweden
Yu.A. Boikov
Affiliation:
Ioffe Physico-Technical Institute Russian Academy of Sciences, 194021 St. Petersburg, Russia
I.T. Serenkov
Affiliation:
Ioffe Physico-Technical Institute Russian Academy of Sciences, 194021 St. Petersburg, Russia
V.I. Sakharov
Affiliation:
Ioffe Physico-Technical Institute Russian Academy of Sciences, 194021 St. Petersburg, Russia
M.P. Volkov
Affiliation:
Ioffe Physico-Technical Institute Russian Academy of Sciences, 194021 St. Petersburg, Russia
Get access

Abstract

Electrical transport and microstructure of interfaces between nm-thick films of various perovskite oxides grown by pulsed laser deposition (PLD) on TiO2- terminated SrTiO3 (STO) substrates are compared. LaAlO3/STO and KTaO3/STO interfaces become quasi-2DEG after a critical film thickness of 4 unit cell layers. The conductivity survives long anneals in oxygen atmosphere. LaMnO3/STO interfaces remain insulating for all film thicknesses and NdGaO3/STO interfaces are conducting but the conductivity is eliminated after oxygen annealing. Medium-energy ion spectroscopy and scanning transmission electron microscopy detect cationic intermixing within several atomic layers from the interface in all studied interfaces. Our results indicate that the electrical reconstruction in the polar oxide interfaces is a complex combination of different mechanisms, and oxygen vacancies play an important role.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ohtomo, A. and Hwang, H.Y., Nature (London), 427, 423 (2004).Google Scholar
Thiel, S., Hammerl, G., Schmehl, A., Schneider, C.W., and Mannhart, J., Science 313, 1942 (2006).CrossRefGoogle Scholar
Brinkman, A., Huijben, M., Vanzeln, M., Huijben, J., Zeitler, U., Man, J.C., Van Der Wiel, W.G., Rijnders, G., Blank, D.H.A., and Hilgenkamp, H.H., Nature Mater. 6, 493 (2007).CrossRefGoogle Scholar
Kalabukhov, A., Boikov, Yu. A., Serenkov, I. T., Sakharov, V. I., Börjesson, J., Ljustina, N., Olsson, E., Winkler, D., and Claeson, T., EPL 93, 37001 (2011).CrossRefGoogle Scholar
Cancellieri, C., Reyren, N., Gariglio, S., Caviglia, A. D., Fete, A., and Triscone, J.-M., EPL 91, 17004 (2010)CrossRefGoogle Scholar
Siemons, W., Koster, G., Yamamoto, H., Harrison, W. A., Lukovsky, G., Geballe, T. H., Blank, D. H. A. and Beasley, M. R., Phys.Rev.Lett. 98, 196802 (2007)CrossRefGoogle Scholar
Takizawa, M., Tsuda, S., Susaki, T., Hwang, H. Y., and Fujimori, A., Phys.Rev. B 84, 245124 (2011)CrossRefGoogle Scholar
Nakagawa, N., Hwang, H.Y., and Muller, D.A., Nature Mater. 5, 204, 2006.CrossRefGoogle Scholar
Huijben, M., Brinkman, A., Koster, G., Rijnders, G., Hilgenkamp, H., and Blank, D. H. A., Adv. Mater. 21, 1 (2009)Google Scholar
Willmott, P.R., Pauli, S.A., Herger, R., Schleputz, C.M., Kumah, D., Cionca, C., and Yacoby, Y., Phys.Rev.Lett. 99, 155502 (2007)CrossRefGoogle Scholar
Kalabukhov, A.S., Boikov, Yu.A., Serenkov, I.T., Sakharov, V.I., Popok, V.N., Gunnarsson, R., Börjesson, J., Ljustina, N., Olsson, E., Winkler, D., and Claeson, T., Phys.Rev.Lett. 103,146101 (2009).CrossRefGoogle Scholar
Chambers, S.A., Engelhard, M.H., Shutthanandan, V., Zhu, Z., Droubay, T.C., Qiao, L., Sushko, P.V., Feng, T., Lee, H.D., Gustafsson, T., Garfunkel, E., Shah, A.B., Zuo, J.-M., and Ramasse, Q.M., Surface Science Reports 65, 317 (2010)CrossRefGoogle Scholar
Perna, P., Maccariello, D., Radovic, M., Scotti di Uccio, U., Pallecchi, I., Codda, M., Marré, D., Cantoni, C., Gazquez, J., Varela, M., Pennycook, S. J., and Miletto Granozio, F., Appl. Phys. Lett. 97, 152111 (2010)CrossRefGoogle Scholar
Choi, W. S., Jeong, D. W., Jang, S. Y., Marton, Z., Seo, S. S. A., Lee, H. N., and Lee, Y. S., J. of the Korean Physical Society 58, 569 (2011)CrossRefGoogle Scholar
Luysberg, M., Heidelmann, M., Houben, L., Boese, M., Heeg, T., Schubert, J., and Roeckerath, M., Acta Materialia 57, 3192 (2009)Google Scholar
Chambers, S.A., Surf.Sci. 605, 1133 (2011)CrossRefGoogle Scholar
Bert, J. A., Kalisky, B., Bell, C., Kim, M., Hikita, Y., Hwang, H.Y., and Moler, K. A., Nature Phys. 7, 767 (2011)CrossRefGoogle Scholar
Cui, Y., Salvador, J. R., Yang, J., Wang, H., Amow, G., and Kleinke, H., J. Electronic Materials 38, 1002 (2009)CrossRefGoogle Scholar
Chen, Y., Pryds, N., Kleibeuker, J. E., Koster, G., Sun, J., Stamate, E., Shen, B., Rijnders, G., and Linderoth, S., Nano Lett. 11, 3774 (2011)CrossRefGoogle Scholar