Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-16T11:05:42.425Z Has data issue: false hasContentIssue false

Multi-port power converter for segmented PEM fuel cell in transport application

Simulation with fault-tolerant strategy

Published online by Cambridge University Press:  09 May 2012

A. De Bernardinis*
Affiliation:
IFSTTAR LTN / SPEE Labs, 25 allée des Marronniers – Satory, 78000 Versailles, France
E. Frappé
Affiliation:
IFSTTAR LTN / SPEE Labs, 25 allée des Marronniers – Satory, 78000 Versailles, France
O. Béthoux
Affiliation:
LGEP CNRS UMR 8507 / SPEE Labs, 11 rue Joliot Curie, Plateau du Moulon, 91192 Gif-sur-Yvette, France
C. Marchand
Affiliation:
LGEP CNRS UMR 8507 / SPEE Labs, 11 rue Joliot Curie, Plateau du Moulon, 91192 Gif-sur-Yvette, France
G. Coquery
Affiliation:
IFSTTAR LTN / SPEE Labs, 25 allée des Marronniers – Satory, 78000 Versailles, France
Get access

Abstract

To fulfill the transport applications, either for traction or on-board auxiliaries systems, a power generator based on fuel cell needs significant power. For this purpose, long fuel cell stacks, either mono- or multi-stack systems, are already implemented as technological solutions. Long stacks though may be affected by spatial discrepancies (fluidics, temperature) causing possible failures. The latter often occur on localized stack sections. A corrective action has to be taken to quickly restore the fuel cell’s state of health. As an alternative to fluidic action, segmented electric action is explored in this paper. First, an “All or Nothing” solution achieved with electrical by-pass circuits is analyzed: it proved simple to implement but restrictive to exploit. Consequently, a “gradual” action is proposed by using the power electronics converter associated to the fuel cell. Hence, the present work investigates the approach consisting in individually driving the electric power delivered by each segment of a long polymer electrolyte membrane fuel cell stack. Each segment is controlled independently according to its state of health. To achieve this objective, the article provides an extended multi-criteria analysis of several power converter topologies. The converter topology has to be in agreement with transportation specifications: simple, compact, having a high efficiency and should be adapted to manage fuel cell degraded modes. Among several studied topologies, resonant isolated boost stands out as a candidate topology. The related multi-port architecture and algorithm structure are analyzed by numerical simulations, taking into account degraded modes and technology considerations.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

World Energy Outlook 2008, OECD/IEA (IEA Publications, Paris, 2008)
Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the Energy Performance Of Buildings (recast), Publication of the Official Journal of the European Union, 18 June 2010, L 153/13
Regulation (EC) No. 715/2007 of the European Parliament and of the Council of 20 June 2007 on type approval of motor vehicles with respect to emissions from light passenger and commercial vehicles (Euro 5 and Euro 6) and on access to vehicle repair and maintenance information, Publication of the Official Journal of the European Union, 29 June 2007, L 171/1
Sekizawa, K., Kitamura, N., Manabe, K., Nonobe, Y., Kizaki, M., Kojima, K., ECS Trans. 33, 1947(2010)CrossRef
Lin, P., Zhou, P., Wu, C.W., J. Power Sources 194, 381(2009)CrossRef
Corbo, P., Migliardini, F., Veneri, O., Int. J. Hydrogen Energy 32, 4340 (2007)CrossRef
Candusso, D., Harel, F., De Bernardinis, A., Francois, X., Péra, M.-C., Hissel, D., Schott, P., Coquery, G., Kauffmann, J.-M., Int. J. Hydrogen Energy 31, 1019 (2006)CrossRef
De Bernardinis, A., Harel, F., Girardot, L., Candusso, D., Hissel, D., François, X., Coquery, G., Besse, S., Experimental Dynamic Performance of a 30 kW 90 Cell PEFC Stack under Transportation Load Cycle Constraints, in EFCF 2009, Lucerne, Switzerland, 2009, pp. 116Google Scholar
Knights, S., J. Power Sources 127, 127 (2004)CrossRef
Yousfi-Steiner, N., Moçotéguy, P., Candusso, D., Hissel, D., Hernandez, A., Aslanides, A., J. Power Sources 183, 260 (2008)CrossRef
Li, H., Tang, Y., Wang, Z., Shi, Z., Wu, S., Song, D., Zhang, J., Fatih, K., Zhang, J., Wang, H., Liu, Z., Abouatallah, R., Mazza, A., J. Power Sources 178, 103 (2008)CrossRef
Park, Y., Caton, J., J. Power Sources 179, 584 (2008)CrossRef
Wahdame, B., Candusso, D., Harel, F., François, X., Péra, M.-C., Hissel, D., Kauffmann, J.-M., J. Power Sources 182, 429 (2008)CrossRef
Ramousse, J., Adzakpa, K.P., Dubé, Y., Agbossou, K., Fournier, M., Poulin, A., Dostie, M., J. Fuel Cell Sci. Technol. 7, 041006 (2010)CrossRef
Frappé, E., De Bernardinis, A., Bethoux, O., Candusso, D., Harel, F., Marchand, C., Coquery, G., Eur. Phys. J. Appl. Phys. 54, 23412 (2011)CrossRef
Owejan, J.P., Trabold, T.A., Jacobson, D.L., Baker, D.R., Hussey, D.S., Arif, M., Int. J. Heat Mass Trans. 49, 4721 (2006)CrossRef
Fouquet, N., Doulet, C., Nouillant, C., Dauphin-Tanguy, G., Ould-Bouamama, B., J. Power Sources 159, 905(2006)CrossRef
Mulder, G., Deridder, F., Coenen, P., Weyen, D., Martens, A., Int. J. Hydrogen Energy 33, 5728 (2008)CrossRef
Hernandez, A., Outbib, R., Hissel, D., J. Eur. Automated Syst. 42, 1225 (2008)CrossRef
Fontes, G., Turpin, C., Astier, S., A large signal dynamic circuit model of a H2/O2 PEM fuel cell: description, parameter identification and exploitation, in Proc. of FDFC 2008, Nancy, France, 2008
Jang, J., Chiu, H., Yan, W., Sun, W., J. Power Sources 180, 476(2008)CrossRef
Hinaje, M., Sadli, I., Martin, J.-P., Thounthong, P., Raël, S., Davat, B., Int. J. Hydrogen Energy 34, 2718 (2009)CrossRef
Poirot-Crouvezier, J.-P., Roy, F., GENEPAC Project: Realization of a fuel cell stack prototype dedicated to the automotive application, in WHEC, Lyon, France, 2006 pp. 15
Guillet, N., Didierjean, S., Chenu, A., Bonnet, C., Carré, P., Wahdame, B., Dumercy, L., François, X., Girardot, L., Harel, F., Hissel, D., Besse, S., Boblet, S., Chaudron, V., De Bernardinis, A., Coquery, G., Escribano, S., Bardi, N., Scientific and Technological Progress Toward the Development of an 80kWe PEM Fuel Cell System for Transport Applications, in EVS’07 23rd Electrical Vehicles Symposium, Anaheim, CA, USA, 2007
Bonnet, C., Didierjean, S., Guillet, N., Besse, S., Colinart, T., Carré, P., J. Power Sources 182, 441 (2008)CrossRef
Miller, M., Bazylak, A., J. Power Sources 196, 601 (2011)CrossRef
De Bernardinis, A., Péra, M.-C., Garnier, J., Hissel, D., Coquery, G., Kauffmann, J.-M., Energy Convers. Manage. 49, 2367 (2008)CrossRef
Lee, W.-K., Ho, C.-H., Van Zee, J.W., Murthy, M., J. Power Sources 84, 45 (1999)CrossRef
Hwang, J.J., Chang, W.R., Weng, F.B., Su, A., Chen, C.K., Int. J. Hydrogen Energy 33, 3801 (2008)CrossRef
Montanini, R., Squadrito, G., Giacoppo, G., Experimental evaluation of the clamping pressure distribution in a PEM fuel cell using matrix-based piezoresistive thin-film sensors, in XIX IMEKO World Congress Fundamental and Applied Metrology, Lisbon, 2009
Strasser, K., in Handbook of fuel cells , edited by Vielstich, W., Lamm, A., Gasteiger, H.A., vol. 4 (John Wiley & Sons, Chichester, UK, 2003) , pp. 12021214Google Scholar
Schulte, J., System and method for bypassing failed stacks in a multiple stack fuel cell. US Patent App. 20060127710. Published on 15 June 2006
Ronne, J., Mihai, R.C., Shi, M., Fault management in a fuel cell-based system. US Patent App. 7862947B2. Published on 4 January 2011
Candusso, D., De Bernardinis, A., Péra, M.-C., Harel, F., François, X., Hissel, D., Coquery, G., Kauffmann, J.-M., Energy Convers. Manage. 49, 880 (2008)CrossRef
De Bernardinis, A., Candusso, D., Harel, F., François, X., Coquery, G., Energy Convers. Manage. 51, 1044 (2010)CrossRef
Taniguchi, A., Akita, T., Yasuda, K., Miyazaki, Y., J. Power Sources 130, 42 (2004)CrossRef
Taniguchi, A., Akita, T., Yasuda, K., Miyazaki, Y., Int. J. Hydrogen Energy 33, 2323 (2008)CrossRef
Gerard, M., Poirot-Crouvezier, J.-P., Hissel, D., Péra, M.-C., Int. J. Hydrogen Energy 35, 12295 (2010)CrossRef
De Bernardinis, A., Candusso, D., Harel, F., Coquery, G., Power Electronics Interface for an Hybrid PEMFC Generating System with Fault Management Strategies for Transportation, in Proc. EPE 2009, Barcelona, Spain, 2009
Tao, H., Kotsopoulos, A., Duarte, J.L., Hendrix, M.A.M., IEEE Trans. Power Electron. 23, 771 (2008)CrossRef
Wang, L., Collins, E.G., Li, H., IEEE Trans. Veh. Technol. 60, 1419 (2011)CrossRef
De Doncker, R.W.A.A., Divan, D.M., Kheraluwala, M.H., IEEE Trans. Ind. Appl. 27, 63 (1991)CrossRef
Kheraluwala, M.H., Gascoigne, R.W., Divan, D.M., Baumann, E.D., IEEE Trans. Ind. Appl. 28, 1294 (1992)CrossRef
Bai, H., Mi, C., IEEE Trans. Power Electron. 23, 2905 (2008)CrossRef
Krismer, F., Round, S., Kolar, J.W., Performance optimization of a high current dual active bridge with a wide operating voltage range, in Proc. Power Electronics Specialists Conf., PESC’06, 2006
Mariethoz, S., Rufer, A., Multisource DC-DC converter for the supply of hybrid multilevel converter, in Conference Record of the 2006 IEEE Industry Applications Conf., 41st IAS Annual Meeting, vol. 2, Tampa, FL, USA, 2006, pp. 982987
Zhao, C., Round, S.D., Kolar, J.W., IEEE Trans. Power Electron. 23, 2443 (2008)CrossRef
Frappé, E., De Bernardinis, A., Bethoux, O., Marchand, C., Coquery, G., A Soft-Switching Multisource DC-DC Converter for Segmented PEM Fuel Cell Power Management in Vehicle Application, in IEEE Vehicle Power and Propulsion Conf., Chicago, IL, USA, 2011
Rallieres, O., Mulot, J., Hissel, D., Turpin, C., Harel, F., Péra, M.-C., Fontes, G., Astier, S., Impact des ondulations de courant générées par un convertisseur DC-DC boost sur une pile à combustible PEM, in Proc. of Electrotechnique du Futur 2011, Belfort, France, 2011 [in French]
Croulard, V., Baptiste, G.-W., Durville, A., Double resonance electronic converter, US Patent Application Publication, US 2003/0231514A1, Publication date: 18 December 2003
Zainea, M., Godoy, E., Cormerais, H., Buisson, J., Guéguen, H., A double resonance generator simulation using a hybrid approach, in Proc. EPE 2005 Conf., Dresden, Germany, 2005
De Bernardinis, A., Butterbach, S., Lallemand, R., Jeunesse, A., Coquery, G., Aubin, P., Double resonant converter topology with fast switching semiconductors for lead-acid battery charger used in hybrid electric locomotive, IEEE Int. Symp. on Industrial Electronics, Gdańsk, Poland, 2011, pp. 239244Google Scholar
Lembeye, Y., Bang, V.D., Lefevre, G., Ferrieux, J.-P., IEEE Trans. Energy Convers. 24, 203 (2009)CrossRef
Nymand, M., Andersen, M.A.E., IEEE Trans. Ind. Electron. 57, 505 (2010)CrossRef
Vazquez, A., Aguilar, C., Canales, F., Ponce, M., Integrated power conditioner topology for fuel cell based power supply systems, in Proc. of IEEE PESC’08, 2008, pp. 223229
Wang, K., Lin, C.Y., Zhu, L., Qu, D., Lee, F.C., Lai, J.S., Bi-directional DC to DC converters for fuel cell systems, in Power Electronics in Transportation, Dearborn, USA, 1998, pp. 4751Google Scholar
Benqassmi, H., Ferrieux, J.-P., Barbaroux, J., Current-source resonant converter in power factor correction, in Proc. PESC’97. IEEE Power Electronics Specialists Conf., 1997, pp. 378384
Chen, J.-F., Chen, R.-Y., Liang, T.-J., IEEE Trans. Power Electron. 23, 379 (2008)CrossRef
Chen, R.-Y., Liang, T.-J., Chen, J.-F., Lin, R.-L., Tseng, K.-C., IEEE Trans. Ind. Appl. 44, 1218 (2008)CrossRef
Špánik, P., Feňo, I., Kácsor, G., Lokšeninec, I., Adv. Electr. Electron. Eng. Consulted online 10 February 2012 at http://www.paytongroup.com/info/Planar%20trans._paper.pdf
Tech. Datasheet IXFN230N20T, IXYS Corp., DS100134A (06/11)