Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-29T09:34:47.669Z Has data issue: false hasContentIssue false

Computational aspects of many-body potentials

Published online by Cambridge University Press:  09 May 2012

Steven J. Plimpton
Affiliation:
Sandia National Laboratories, Albuquerque, NM; email sjplimp@sandia.gov
Aidan P. Thompson
Affiliation:
Scalable Algorithms Department, Sandia National Laboratories, Albuquerque, NM; athomps@sandia.gov
Get access

Abstract

We discuss the relative complexity and computational cost of several popular many-body empirical potentials, developed by the materials science community over the past 30 years. The inclusion of more detailed many-body effects has come at a computational cost, but the cost still scales linearly with the number of atoms modeled. This is enabling very large molecular dynamics simulations with unprecedented atomic-scale fidelity to physical and chemical phenomena. The cost and scalability of the potentials, run in serial and parallel, are benchmarked in the LAMMPS molecular dynamics code. Several recent large calculations performed with these potentials are highlighted to illustrate what is now possible on current supercomputers. We conclude with a brief mention of high-performance computing architecture trends and the research issues they raise for continued potential development and use.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Pixar Animation Studios; www.pixar.com.Google Scholar
2.Pickavance, M., online posting, www.denofgeek.com/movies/417298/the_cgi_achievements_of_pixar.html (accessed March 2012).Google Scholar
4.Jones, J.E., Proc. R. Soc. London, Ser. A 106, 463 (1924).Google Scholar
5.MacKerell, A.D. Jr., Bashford, D., Bellott, M., Dunbrack, R.L. Jr., Evanseck, J.D., Field, M.J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F.T.K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D.T., Prodhom, B., Reiher, W.E. III, Roux, B., Schlenkrich, M., Smith, J.C., Stote, R., Straub, J., Watanabe, M., Wirkiewicz-Kuczera, J., Yin, D., Karplus, M., J. Phys. Chem. B 102, 3586 (1998).Google Scholar
6.Cheatham, T.E. III, Young, M.A., Biopolymers 56, 232 (2001).Google Scholar
7.Daw, M.S., Baskes, M.I., Phys. Rev. Lett. 50, 1285 (1983).Google Scholar
8.Daw, M.S., Baskes, M.I., Phys. Rev. B 29, 6443 (1984).Google Scholar
9.Baskes, M.I., Phys. Rev. Lett. 59, 2666 (1987).Google Scholar
10.Tersoff, J., Phys. Rev. B 37, 6991 (1988).Google Scholar
11.Brenner, D.W., Phys. Rev. B 42, 9458 (1990).Google Scholar
12.Stuart, S.J., Tutein, A.B., Harrison, J.A.. J. Chem. Phys. 112, 6472 (2000).Google Scholar
13.Pettifor, D.G., Oleinik, I.I., Phys. Rev. B 59, 8487 (1999).Google Scholar
14.van Duin, A.C.T., Dasgupta, S., Lorant, F., Goddard, W.A. III, J. Phys. Chem. A 105, 9396 (2001).Google Scholar
15.Yu, J., Sinnott, S.B., Phillpot, S.R., Phys. Rev. B 75, 085311 (2007).Google Scholar
16.Rick, S.W., Stuart, S.J., Berne, B.J., J. Chem. Phys. 101, 16141 (1994).Google Scholar
17.Wolf, D., Keblinski, P., Phillpot, S.R., Eggebrecht, J., J. Chem. Phys. 110, 8254 (1999).Google Scholar
18.Ewald, P., Ann. Phys. 369, 253287 (1921).Google Scholar
19.LAMMPS molecular dynamics package, http://lammps.sandia.gov; Potential benchmarks, http://lammps.sandia.gov/bench.html#potentials.Google Scholar
20.Plimpton, S., J. Comp. Phys. 117, 1 (1995).Google Scholar
21.Brenner, D.W., Shenderova, O.A., Harrison, J.A., Stuart, S.J., Ni, B., Sinnott, S.B., J. Phys. Condens. Matter 14, 783 (2002).Google Scholar
22.Shan, T.-R., Devine, B.D., Kemper, T.W., Sinnott, S.B., Phillpot, S.R., Phys. Rev. B 81, 125328 (2010).Google Scholar
23.Thompson, A.P., Plimpton, S.J., Mattson, W., J. Chem. Phys. 131, 154107 (2009).Google Scholar
24.Hockney, R.W., Eastwood, J.W., Computer Simulation Using Particles (IOP, Bristol, 1988).Google Scholar
25.Pollock, E.L., Glosli, J., Comput. Phys. Commun. 95, 93 (1996).Google Scholar
26.Darden, T., York, D., Pedersen, L., J. Chem. Phys. 98, 10089 (1993).Google Scholar
27.Bártok, A.P., Payne, M.C., Kondor, R., Csányi, G., Phys. Rev. Lett. 104, 136403 (2010).Google Scholar
28.Mattsson, T.R., Desjarlais, M.P., Phys. Rev. Lett. 97 (1) (2006).Google Scholar
29.Root, S., Magyar, R.J., Carpenter, J.H., Hanson, D.L., Mattsson, T.R., Phys. Rev. Lett. 105 (8) (2010).Google Scholar
30.Kresse, G., Hafner, J., Phys. Rev. B 49 (20), 14251 (1994).Google Scholar
31.Kubota, A., Wolfer, W.G., Valone, S.M., Baskes, M.I., J. Comput.-Aided Mater. Des. 14, 367 (2007).Google Scholar
32.Cornwell, C.F., Welch, C.R., J. Chem. Phys. 134, 204708 (2011).Google Scholar
33.Chen, H.P., Kalia, R.K., Kaxiras, E., Lu, G., Nakano, A., Nomura, K., van Duin, A.C.T., Vashishta, P., Yuan, Z., Phys. Rev. Lett. 104, 155502 (2010).Google Scholar
34.Tsuzuki, H., Branicio, P.S., Rino, J.P.. Comput. Phys. Commun. 177, 518 (2007).Google Scholar
35.Lane, J.M.D., Grest, G.S., Thompson, A.P., Cochrane, K.R., Desjarlais, M.P., Mattsson, T.R., in AIP Conference Proceedings, Shock Compression of Condensed Matter 2011, Elert, M., Buttler, W.T., Borg, J.P., Jordan, J.L., Vogler, T.J., Eds., vol. 1426, p. 1435 (2012).Google Scholar
36.Knowledgebase of Interatomic Models (KIM); www.openkim.org.Google Scholar
37.Anderson, J.A., Lorenz, C.D., Travesset, A., J. Comput. Phys. 227, 5342 (2008).Google Scholar
38.Brown, W.M., Kohlmeyer, A., Plimpton, S.J., Tharringon, A.N., Comput. Phys. Commun. 183, 449 (2012).Google Scholar
39.Brown, W.M., Wang, P., Plimpton, S.J., Tharrington, A.N., Comput. Phys. Commun. 182 (4), 898 (2011).Google Scholar
40.Stone, J.E., Phillips, J.C., Freddolino, P.L., Hardy, D.J., Trabuco, L.G., Schulten, K., J. Comput. Chem. 28 (16), 2618 (2007).Google Scholar
41.Shaw, D.E., Maragakis, P., Lindorff-Larsen, K., Piana, S., Dror, R.O., Eastwood, M.P., Bank, J.A., Jumper, J.M., Salmon, J.K., Shan, Y.B., Wriggers, W., Science 330, 341 (2010).Google Scholar
42.Berendsen, H.J.C., Grigera, J.R., Straatsma, T.P., J. Phys. Chem. 91, 6269 (1987).Google Scholar