Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-25T01:43:17.169Z Has data issue: false hasContentIssue false

Liver enzymes and blood metabolites in a population of free-ranging red deer (Cervus elaphus) naturally infected with Fascioloides magna

Published online by Cambridge University Press:  31 May 2011

K. Severin*
Affiliation:
Department of Forensic and Juridical Veterinary Medicine, Veterinary Faculty University of Zagreb, Heinzelova 55, 10000Zagreb, Croatia
T. Mašek
Affiliation:
Department of Animal Nutrition, Veterinary Faculty University of Zagreb, Heinzelova 55, 10000Zagreb, Croatia
Z. Janicki
Affiliation:
Department for Game Biology, Pathology and Breeding, Veterinary Faculty University of Zagreb, Heinzelova 55, 10000Zagreb, Croatia
D. Konjević
Affiliation:
Department for Game Biology, Pathology and Breeding, Veterinary Faculty University of Zagreb, Heinzelova 55, 10000Zagreb, Croatia
A. Slavica
Affiliation:
Department for Game Biology, Pathology and Breeding, Veterinary Faculty University of Zagreb, Heinzelova 55, 10000Zagreb, Croatia
A. Marinculić
Affiliation:
Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
F. Martinković
Affiliation:
Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
G. Vengušt
Affiliation:
Institute for Breeding and Health Care of Game, Fish and Bees, Veterinary Faculty University of Ljubljana, Gerbiceva 60, 1115Ljubljana, Slovenia
P. Džaja
Affiliation:
Department of Forensic and Juridical Veterinary Medicine, Veterinary Faculty University of Zagreb, Heinzelova 55, 10000Zagreb, Croatia
*
*Fax: +385 1 2390125 E-mail: severin@vef.hr

Abstract

We investigated the effects of Fascioloides magna infection on the serum biochemistry values of the naturally infected red deer population in eastern Croatia. The investigation was performed on 47 red deer with F. magna infection confirmed patho-anatomically in 27 animals (57.4%). Fibrous capsules and migratory lesions were found in 14 deer while only fibrous capsules without migratory lesions were found in 13 deer. In 13 deer both immature and mature flukes were found, in 5 deer only immature flukes were found and in 9 deer only mature flukes were found. Fascioloides magna infected deer with fibrous capsules and migratory lesions had significantly higher values for lactate dehydrogenase (LDH), glutamate dehydrogenase (GLDH) and globulin, and lower values for albumin/globulin ratio and glucose compared to uninfected deer. Fascioloides magna infected deer with fibrous capsules without the presence of migratory lesions had higher values for alanine aminotransferase (ALT) and globulin, and lower values for albumin/globulin ratio and glucose, than the uninfected deer. The number of immature flukes was positively correlated with values of aspartate aminotransferase (AST), γ-glutamyltransferase (GGT), LDH, GLDH, urea and triglycerides. The number of migratory lesions was positively correlated with GGT, GLDH, globulin and urea values. The creatinine value was positively correlated with the number of mature flukes. The trial showed that F. magna infection causes significant changes in serum biochemistry. Moreover, these changes do not completely resemble changes following F. hepatica infection. Further investigation of changes in liver enzymes and other serum metabolites in controlled, experimentally induced fascioloidosis in red deer is needed to better understand the pathogenesis of F. magna.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, P.H., Berrett, S., Brush, P.J., Hebert, C.N., Parfitt, J.W. & Patterson, D.S. (1977) Biochemical indicators of liver injury in calves with experimental fascioliasis. Veterinary Record 15, 4345.CrossRefGoogle Scholar
Anderson, P.H., Berrett, S. & Patterson, D.S. (1978) Resistance to Fasciola hepatica in cattle. II. Biochemical and morphological observations. Journal of Comparative Pathology 88, 245251.CrossRefGoogle ScholarPubMed
Anderson, P.H., Matthews, J.G., Berrett, S., Brush, P.J. & Patterson, D.S. (1981) Changes in plasma enzyme activities and other blood components in response to acute and chronic liver damage in cattle. Research in Veterinary Science 31, 14.CrossRefGoogle ScholarPubMed
Behm, C.A. & Sangster, N.C. (1999) Pathology, pathophysiology and clinical aspects. pp. 185224in Dalton, J.P. (Ed.) Fasciolosis. Wallingford, CABI Publishing.Google Scholar
Bossaert, K., Lonneux, J.F., Godeau, J.M., Peeters, J. & Losson, B. (1999) Serological and biochemical follow-up in cattle naturally infected with Fasciola hepatica, and comparison with a climate model for predicting risks of fascioliosis. Veterinary Research 30, 615628.Google Scholar
Bulgin, M.S., Anderson, B.C., Hall, R.F. & Lang, B.Z. (1984) Serum gamma glutamyl transpeptidase activity in cattle with induced fascioliasis. Research in Veterinary Science 37, 167171.CrossRefGoogle ScholarPubMed
Conboy, G.A. & Stromberg, B.E. (1991) Hematology and clinical pathology of experimental Fascioloides magna infection in cattle and guinea pigs. Veterinary Parasitology 40, 241255.CrossRefGoogle ScholarPubMed
Doy, T.G. & Hughes, D.L. (1984) Early migration of immature Fasciola hepatica and associated liver pathology in cattle. Research in Veterinary Science 37, 219222.CrossRefGoogle ScholarPubMed
Erhardová-Kotrlá, B. (1971) The occurrence of Fascioloides magna (Bassi, 1875) in Czechoslovakia. 155 pp. Prague, Czech Academy of Scieces.Google Scholar
Ferre, I., López, P., Gonzalo-Orden, M., Julian, M.D., Rojo-Vázquez, F.A. & González-Gallego, J. (1995) The effects of subclinical fasciolosis on hepatic secretory function in sheep. Parasitology Research 81, 127131.CrossRefGoogle ScholarPubMed
Foreyt, W.J. (1996) Mule deer (Odocoileus hemionus) and elk (Cervus elaphus) as experimental definitive hosts for Fascioloides magna. Journal of Wildlife Diseases 32, 603606.CrossRefGoogle ScholarPubMed
Foreyt, W.J. & Todd, A.C. (1976) Development of the large American liver fluke Fascioloides magna in white-tailed deer, cattle and sheep. Journal of Parasitology 62, 2632.CrossRefGoogle ScholarPubMed
Foreyt, W.J. & Todd, A.C. (1979) Selected clinicopathologic changes associated with experimentally induced Fascioloides magna infection in white-tailed deer. Journal of Wildlife Diseases 15, 8389.CrossRefGoogle ScholarPubMed
Goddard, P.J., Keay, G. & Grigor, P.N. (1997) Lactate dehydrogenase quantification and isoenzyme distribution in physiological response to stress in red deer (Cervus elaphus). Research in Veterinary Science 63, 119122.CrossRefGoogle ScholarPubMed
Hawkins, C.D. (1984) The use of haemoglobin, packed-cell volume and serum sorbitol dehydrogenase as indicators of the development of fascioliasis in sheep. Veterinary Parasitology 15, 125133.CrossRefGoogle ScholarPubMed
Hoffman, W.E. & Solter, P.F. (2008) Diagnostic enzymology of domestic animals. pp. 351378in Kaneko, J.J., Harvey, J.W. & Bruss, M.L. (Eds) Clinical biochemistry of domestic animals. San Diego, Academic Press.CrossRefGoogle Scholar
Janicki, Z., Konjević, D. & Severin, K. (2005) Monitoring and treatment of Fascioloides magna in semi-farm red deer husbandry in Croatia. Veterinary Research Communications 29, 8388.CrossRefGoogle Scholar
Králová-Hromadová, I., Bazsalovicsová, E., Štefka, J., Špakulová, M., Vávrová, S., Szemes, T., Tkach, V., Trudgett, A. & Pybus, M. (2011) Multiple origins of European populations of the giant liver fluke Fascioloides magna (Trematoda: Fasciolidae), a liver parasite of ruminants. International Journal for Parasitology 48, 373383.CrossRefGoogle Scholar
Majoros, G. & Sztojkov, V. (1994) Apperarance of the large American liver fluke (Fascioloides magna Bassi, 1875) (Trematoda: Fasciolata) in Hungary. Parasitologia Hungarica 27, 2738.Google Scholar
Malek, E.A. (1980) Snail-transmitted parasitic diseases. pp. 171178. Boca Raton, Florida, CRC Press.Google Scholar
Marco, I. & Lavín, S. (1999) Effect of the method of capture on the haematology and blood chemistry of red deer (Cervus elaphus). Research in Veterinary Science 66, 8184.CrossRefGoogle ScholarPubMed
Marinculić, A., Džakula, N., Janicki, Z., Hardy, Z., Lučinger, S. & Živičnjak, T. (2002) Appearance of American liver fluke (Fascioloides magna, Bassi, 1875) in Croatia – a case report. Veterinarski Arhiv 72, 319325.Google Scholar
Mašek, T., Konjević, D., Severin, K., Janicki, Z., Grubešić, M., Krapinec, K., Bojanc, J., Mikulec, Ž. & Slavica, A. (2009) Hematology and serum biochemistry of European mouflon (Ovis orientalis musimon) in Croatia. European Journal Wildlife Research 55, 561566.CrossRefGoogle Scholar
Matanović, K., Severin, K., Martinković, F., Šimpraga, M., Janicki, Z. & Barišić, J. (2007) Hematological and biochemical changes in organically farmed sheep naturally infected with Fasciola hepatica. Parasitology Research 101, 16571661.CrossRefGoogle ScholarPubMed
Naftalin, L., Child, V.J. & Morley, D.A. (1969) Observations on the site of origin of serum γ-glutamyl-transpeptidase. Clinica Chimica Acta 26, 297300.CrossRefGoogle Scholar
Padilla, S., Bouda, J., Quiroz-Rocha, G.F., Davalos, J.L. & Sanchez, A. (2000) Biochemical and haematological values in venous blood of captive red deer (Cervus elaphus) at high altitude. Acta Veterinaria Brno 69, 327331.CrossRefGoogle Scholar
Pfeiffer, H. (1983) Fascioloides magna - Erster Fund in Oesterreich. Wiener Tierarztliche Monatsschrift 70, 168170.Google Scholar
Presidente, P.J., McCraw, B.M. & Lumsden, J.H. (1980) Pathogenicity of immature Fascioloides magna in white-tailed deer. Canadian Journal of Comparative Medicine 44, 423432.Google ScholarPubMed
Pybus, M.J. (1990) Survey of hepatic and pulmonary helminths of wild cervids in Alberta, Canada. Journal of Wildlife Diseases 26, 453459.CrossRefGoogle ScholarPubMed
Rajković-Janje, R., Bosnić, S., Rimac, D. & Gojmerac, T. (2008) The prevalence of American liver fluke Fascioloides magna (Bassi 1875) in red deer from Croatian hunting grounds. European Journal Wildlife Research 54, 525528.CrossRefGoogle Scholar
Rajsky, D., Patus, A. & Bukovjan, K. (1994) Prvy nalez Fascioloides magna (Bassi, 1875) na Slovensku. Slovenský Veterinársky Časopis 19, 2930.Google Scholar
Rosef, O., Nystøyl, H.L., Solenes, T. & Arnemo, J.M. (2004) Haematological and serum biochemical reference values in free-ranging red deer (Cervus elaphus atlanticus). Rangifer 24, 7985.CrossRefGoogle Scholar
Rowlands, D.T. & Clampitt, R.B. (1979) Plasma enzyme levels in ruminants infected with Fasciola hepatica. Veterinary Parasitology 5, 155175.CrossRefGoogle Scholar
Salomon, S. (1932) Fascioloides magna bei deutschem Rotwild. Berliner Tierarztliche Wochenschrift 48, 627628.Google Scholar
Severin, K., Konjević, D., Janicki, Z., Slavica, A., Marinculić, A. & Cvrković, D. (2007) Monitoring of Fascioloides magna infection in free living red deer populations in east Croatia. The Second International Symposium on Game and Ecology. Book of Abstracts. 17 pp. University of Zagreb Faculty of Veterinary Medicine, Department for Game Biology, Pathology and Breeding.Google Scholar
Simesen, M.G. & Nansen, P. (1974) Serum-gamma-glutamyltranspeptidase (gamma-GT) and aspartate-aminotransferase (AspAT) activities in adult cattle with chronic Fasciola hepatica infection. Acta Veterinaria Scandinavica 15, 239243.CrossRefGoogle ScholarPubMed
Slavica, A., Florijančić, T., Janicki, Z., Konjević, D., Severin, K., Marinculić, A. & Pintur, K. (2006) Treatment of fascioloidosis (Fascioloides magna, Bassi, 1875) in free ranging and captive red deer (Cervus elaphus L.) at eastern Croatia. Veterinarski Arhiv 76, S9S18.Google Scholar
Slusarski, W. (1955) Studia nad europejskim przedstawicielami przywry Fascioloides magna (Bassi, 1875) I. Ponowne wykrycie inwazji u jeleni na Slacsku. Acta Parasitologica Polonica 3, 159.Google Scholar
Stromberg, B.E., Conboy, G.A., Hayden, D.W. & Schlotthauer, J.C. (1985) Pathophysiologic effects of experimentally induced Fascioloides magna infection in sheep. American Journal of Veterinary Research 46, 16371641.Google ScholarPubMed
Sykes, A.R., Coop, R.L. & Robinson, M.G. (1980) Chronic subclinical ovine fascioliasis: plasma glutamate dehydrogenase, gamma-glutamyl transpeptidase and aspartate aminotransferase activities and their significance as diagnostic aids. Research in Veterinary Science 28, 7175.CrossRefGoogle ScholarPubMed
Topal, A., Gul, N.Y. & Yanik, K. (2010) Effect of capture method on hematological and serum biochemical values of red deer (Cervus elaphus) in Turkey. Journal of Animal and Veterinary Advances 9, 12271231.Google Scholar
Ullrich, K. (1930) Über das Vorkommen von seltenen oder wenig bekannten Parasiten der Sägetiere und Vögel in Böhmen und Mähren. Prager Archiv Tiermedicine 10, 1943.Google Scholar
Vengušt, G., Klinkon, M., Bidovec, A. & Vengušt, A. (2003) Fasciola hepatica: effects on blood constituents and liver minerals in fallow deer (Dama dama). Veterinary Parasitology 112, 5161.CrossRefGoogle ScholarPubMed
Wyckoff, J.H. & Bradley, R.E. (1985) Diagnosis of Fasciola hepatica infection in beef calves by plasma enzyme analysis. American Journal of Veterinary Research 46, 10151019.Google ScholarPubMed
Yang, Q., Mao, W.H., Ferre, I., Bayón, J.E., Mao, X.Z. & González-Gallego, J. (1998) Plasma aspartate aminotransferase (AST), glutamate dehydrogenase (GLDH) and gamma-glutamyl transpeptidase (GGT) activities in water buffaloes with experimental subclinical fasciolosis. Veterinary Parasitology 78, 129136.CrossRefGoogle ScholarPubMed
Zajac, A.M. (1994) Fecal examination in the diagnosis of parasitism. pp. 388in Sloss, M.W., Kemp, R.L. & Zajac, A.M. (Eds) Veterinary clinical parasitology. Iowa, Iowa State Press.Google Scholar