Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-20T05:23:12.513Z Has data issue: false hasContentIssue false

Confined crystallization in polymer nanolayered films: A review

Published online by Cambridge University Press:  17 February 2012

Joel M. Carr
Affiliation:
Department of Macromolecular Science and Engineering, Center for Layered Polymeric Systems, Case Western Reserve University, Cleveland, Ohio 44106-7202
Deepak S. Langhe
Affiliation:
Department of Macromolecular Science and Engineering, Center for Layered Polymeric Systems, Case Western Reserve University, Cleveland, Ohio 44106-7202
Michael T. Ponting
Affiliation:
Department of Macromolecular Science and Engineering, Center for Layered Polymeric Systems, Case Western Reserve University, Cleveland, Ohio 44106-7202
Anne Hiltner
Affiliation:
Department of Macromolecular Science and Engineering, Center for Layered Polymeric Systems, Case Western Reserve University, Cleveland, Ohio 44106-7202
Eric Baer*
Affiliation:
Department of Macromolecular Science and Engineering, Center for Layered Polymeric Systems, Case Western Reserve University, Cleveland, Ohio 44106-7202
*
a)Address all correspondence to this author. e-mail: exb6@case.edu
Get access

Abstract

Recent advances utilizing forced assembly multilayer coextrusion have led to the development of a new approach to study the structure–property relationships of confined polymer crystallization. Confinement of crystalline polymer materials in layer thicknesses ranging from hundreds to tens of nanometers thick, resulted in multilayer films possessing enhanced gas barrier properties. The enhanced gas barrier has been attributed to nanolayer confinement of the crystalline polymer resulting in a highly ordered intralayer lamellae orientation extending over micron or larger scale areas. Research into the confined crystallization mechanism of the multilayered polymer films has resulted in several material case studies as well as an understanding of the chemical and thermodynamic parameters that control the degree and rate of the confinement in multilayer polymer systems. This review highlights our recent studies on the confinement of poly(ethylene oxide), poly(ε-caprolactone), polypropylene, and poly(vinylidene fluoride) polymers in multilayered films.

Type
Review
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hongwei, L. and Huck, W. T. S.: Polymers in nanotechnology. Curr. Opin. Solid State Mater. Sci. 6(1), 3 (2002).Google Scholar
2.Szleifer, I. and Yerushalmi-Rozen, R.: Polymers and carbon nanotubes—Dimensionality, interactions and nanotechnology. Polymer 4(6), 7803 (2005).CrossRefGoogle Scholar
3.Samad, A., Alam, I., and Saxena, K.: Dendrimers: A class of polymers in the nanotechnology for the delivery of active pharmaceuticals. Curr. Pharm. Des. 15(25), 2958 (2009).CrossRefGoogle ScholarPubMed
4.Ryan, A.J.: Nanotechnology: Squaring up with polymers. Nature 456(7220), 334 (2008).CrossRefGoogle ScholarPubMed
5.Mcculloch, I.: Thin films: Rolling out organic electronics. Nat. Mater. 4, 583 (2005).CrossRefGoogle ScholarPubMed
6.Beadie, G., Shirk, J.S., Rosenberg, A., Lane, P.A., Fleet, E., Kamdar, A.R., Jin, Y., Ponting, M., Yang, Y., Kazmierczak, T., Hiltner, A., and Baer, E.: Optical properties of a bio-inspired gradient refractive index polymer lens. Opt. Express 16, 11540 (2008).CrossRefGoogle ScholarPubMed
7.Reiter, G., Botiz, I., Graveleau, L., Grozev, N., Albrecht, K., Mourran, A., and Moeller, M.: Morphologies of polymer crystals in thin films. Lect. Notes Phys 714, 179 (2007).CrossRefGoogle Scholar
8.Padden, F.J. Jr. and Keith, H.D.: Crystallization in thin films of isotactic polypropylene. J. Appl. Phys. 37, 4013 (1966).CrossRefGoogle Scholar
9.Douzinas, K.C. and Cohen, R.E.: Chain folding in ethylene-butylene-ethylethylene semicrystalline diblock copolymers. Macromolecules 25, 5030 (1992).CrossRefGoogle Scholar
10.Hamley, I.W., Fairclough, J.P.A., Ryan, A.J., Bates, F.S., and Towns-Andrews, E.: Crystallization of nanoscale-confined diblock copolymer chains. Polymer 37, 4425 (1996).CrossRefGoogle Scholar
11.Bartczak, Z., Argon, A.S., Cohen, R.E., and Kowalewski, T.: The morphology and orientation of polyethylene in films of sub-micron thickness crystallized in contact with calcite and rubber substrates. Polymer 40, 2367 (1999).CrossRefGoogle Scholar
12.Mellbring, O., Oiseth, S.K., Krozer, A., Lausmaa, J., and Hjertberg, T.: Spin coating and characterization of thin high-density polyethylene films. Macromolecules 34, 7496 (2001).CrossRefGoogle Scholar
13.Muratoglu, O.K., Argon, A.S., and Cohen, R.E.: Crystalline morphology of polyamide-6 near planar surfaces. Polymer 36, 2143 (1995).CrossRefGoogle Scholar
14.Mukai, U., Cohen, R.E., Bellare, A., and Albalak, R.J.: The influence of melt processing on the spatial organization of polymer chains in a crystallizable diblock copolymer of nylon 6 and PDMS. J. Appl. Polym. Sci. 70, 1985 (1998).3.0.CO;2-V>CrossRefGoogle Scholar
15.Tsuji, M., Novillo, F.A., Fujita, M., Murakami, S., and Kohjiya, S.: Melt-crystallized poly(ethylene 2,6-naphthalate) thin films studied by transmission electron microscopy. J. Mater. Res. 14, 251 (1999).CrossRefGoogle Scholar
16.Zhang, Y., Mukoyama, S., Hu, Y., Yan, C., Ozaki, Y., and Takahashi, I.: Thermal behavior and molecular orientation of poly(ethylene 2,6-naphthalate) in thin films. Macromolecules 40, 4009 (2007).CrossRefGoogle Scholar
17.Durell, M., MacDonald, J.E., Trolley, D., Wehrum, A., Jukes, P.C., Jones, R.A.L., Walker, C.J., and Brown, S.: The role of surface-induced ordering in the crystallisation of PET films. Europhys. Lett. 58, 844 (2002).CrossRefGoogle Scholar
18.Zhu, L., Cheng, S.Z.D., Calhoun, B.H., Ge, Q., Quirk, R.P., Thomas, E.L., Hsiao, B.S., Yeh, F.J., and Lotz, B.: Crystallization temperature-dependent crystal orientations within nanoscale confined lamellae of a self-assembled crystalline−amorphous diblock copolymer. J. Am. Chem. Soc. 122, 5957 (2000).CrossRefGoogle Scholar
19.Schonherr, H. and Frank, C.W.: Ultrathin films of poly(ethylene oxides) on oxidized silicon. 2. In situ study of crystallization and melting by hot stage AFM. Macromolecules 36, 1199 (2003).CrossRefGoogle Scholar
20.Sutton, S.J., Izumi, K., Miyaji, H., Miyamoto, Y., and Miyashita, S.: The morphology of isotactic polystyrene crystals grown in thin films: The effect of substrate material. J. Mater. Sci. 32, 5621 (1997).CrossRefGoogle Scholar
21.Bu, Z., Welch, M.B., Ho, R.M., Zhou, W., Jangchud, I., Eby, R.K., Cheng, S.Z.D., Hsieh, E.T., Johnson, T.W., and Geerts, R.G.: Crystallization, melting, and morphology of syndiotactic polypropylene fractions. 3. Lamellar single crystals and chain folding. Macromolecules 29, 6575 (1996).CrossRefGoogle Scholar
22.Abe, H., Kikkawa, Y., Iwata, T., Aoki, H., Akehata, T., and Doi, Y.: Microscopic visualization on crystalline morphologies of thin films for poly[(R)-3-hydroxybutyric acid] and its copolymer. Polymer 41, 867 (2000).CrossRefGoogle Scholar
23.Mareau, V.H. and Prud’homme, R.E.: In-situ hot stage atomic force microscopy study of poly(ε-caprolactone) crystal growth in ultrathin films. Macromolecules 38, 398 (2005).CrossRefGoogle Scholar
24.Sun, Y.S., Chung, T.M., Li, Y.J., Ho, R.M., Ko, B.T., Jeng, U.S., and Lotz, B.: Crystalline polymers in nanoscale 1D spatial confinement. Macromolecules 39, 5782 (2006).CrossRefGoogle Scholar
25.Ho, R.M., Lin, F.H., Tsai, C.C., Lin, C.C., Ko, B.T., Hsiao, B.S., and Sics, I.: Crystallization-induced undulated morphology in polystyrene-b-poly(l-lactide) block copolymer. Macromolecules 37, 5985 (2004).CrossRefGoogle Scholar
26.Wang, Y., Chan, C.M., Ng, K.M., and Li, L.: What controls the lamellar orientation at the surface of polymer films during crystallization? Macromolecules 41, 2548 (2008).CrossRefGoogle Scholar
27.Frank, C.W., Rao, V., Despotopoulou, M.M., Pease, R.F.W., Hinsberg, W.D., Miller, R.D., and Rabolt, J.F.: Structure in thin and ultrathin spin-cast polymer films. Science 273, 912 (1996).CrossRefGoogle ScholarPubMed
28.Li, Y. and Kaito, A.: Crystal orientation behavior of a poly(vinylidene fluoride)/nylon 11 blend. Macromol. Rapid Commun. 24, 255 (2003).CrossRefGoogle Scholar
29.Hu, Z., Baralia, G., Bayot, V., Gohy, J.F., and Jonas, A.M.: Nanoscale control of polymer crystallization by nanoimprint lithography. Nano Lett. 5, 1738 (2005).CrossRefGoogle ScholarPubMed
30.Forrest, J.A., Dalnoki-Veress, K., Stevens, J.R., and Dutcher, J.R.: Effect of free surfaces on the glass transition temperature of thin polymer films. Phys. Rev. Lett. 77, 2002 (1996).CrossRefGoogle ScholarPubMed
31.Chen, Z.R., Kornfield, J.A., Smith, S.D., Grothaus, J.T., and Satkowski, M.M.: Pathways to macroscale order in nanostructured block copolymers. Science 277, 1248 (1997).CrossRefGoogle Scholar
32.Ponting, M., Hiltner, A., and Baer, E.: Polymer nanostructures by forced assembly: Process, structure, and properties. Macromol. Symp. 294I, 19 (2010).CrossRefGoogle Scholar
33.Wang, H., Keum, J.K., Hiltner, A., Baer, E., Freeman, B., Rozanski, A., and Galeski, A.: Confined crystallization of polyethylene oxide in nanolayer assemblies. Science 323, 757 (2009).CrossRefGoogle ScholarPubMed
34.Ponting, M., Lin, Y., Keum, J.K., Hiltner, A., and Baer, E.: Effect of substrate on the isothermal crystallization kinetics of confined poly(ε-caprolactone) nanolayers. Macromolecules 43, 8619 (2010).CrossRefGoogle Scholar
35.Wang, H., Keum, J.K., Hiltner, A., Baer, E., Freeman, B., Rozanski, A., and Galeski, A.: Supporting information for confined crystallization of polyethylene oxide in nanolayer assemblies. Science 323, 757 (2009).CrossRefGoogle Scholar
36.Wang, H., Keum, J.K., Hiltner, A., and Baer, E.: Confined crystallization of PEO in nanolayered films impacting structure and oxygen permeability. Macromolecules 42, 7055 (2009).CrossRefGoogle Scholar
37.Tadokoro, H., Chatani, Y., Yoshihara, T., Tahara, S., and Murahashi, S.: Structural studies on polyethers, [-(CH2)m-O-]n. II. Molecular structure of poly(ethylene oxide). Makromol. Chem. 73, 109 (1964).CrossRefGoogle Scholar
38.Iwata, T. and Doi, Y.: Morphology and enzymatic degradation of poly(ε-caprolactone) single crystals: Does a polymer single crystal consist of micro-crystals? Polym. Int. 51, 852 (2002).CrossRefGoogle Scholar
39.Wang, H., Keum, J.K., Hiltner, A., and Baer, E.: Crystallization kinetics of poly(ethylene oxide) in confined nanolayers. Macromolecules 43, 3359 (2010).CrossRefGoogle Scholar
40.Takahashi, Y. and Tadokoro, H.: Structural studies of polyethers, (-(CH2)m-O-) n. X. Crystal structure of poly(ethylene oxide). Macromolecules 6, 672 (1973).CrossRefGoogle Scholar
41.Weinkauf, D.H. and Paul, D.R.: The effects of structural order on barrier properties, in Barrier Polymers and Structures, edited by Koros, W. J. (American Chemcial Society, Washington, DC 1990), pp 6091.CrossRefGoogle Scholar
42.Cussler, E.L., Hughes, S.E., Ward, W.J. III, and Aris, R.: Barrier membranes. J. Membr. Sci. 38, 161 (1988).CrossRefGoogle Scholar
43.Massa, M.V. and Dalnoki-Veress, K.: Homogeneous crystallization of poly(ethylene oxide) confined to droplets: The dependence of the crystal nucleation rate on length scale and temperature. Phys. Rev. Lett. 92, 255509 (2004).CrossRefGoogle ScholarPubMed
44.Koutsky, J.A., Walton, A.G., and Baer, E.: Nucleation of polymer droplets. J. Appl. Phys. 38, 1832 (1967).CrossRefGoogle Scholar
45.Muller, A.J., Balsamo, V., Arnal, M.L., Jakob, T., Schmalz, H., and Abetz, V.: Homogeneous nucleation and fractionated crystallization in block copolymers. Macromolecules 35, 3048 (2002).CrossRefGoogle Scholar
46.Wang, H., Keum, J.K., Hiltner, A., and Baer, E.: Impact of nanoscale confinement on crystal orientation of poly(ethylene oxide). Macromol. Rapid Commun. 31, 356 (2010).CrossRefGoogle ScholarPubMed
47.Hermans, P.H.: Contribution to the Physics of Cellulose Fibres (Elsevier, Amsterdam, 1946), p 195.Google Scholar
48.Wang, H., Keum, J.K., Hiltner, A., and Baer, E.: Supporting information for impact of nanoscale confinement on crystal orientation of poly(ethylene oxide). Macromol. Rapid Commun. 31, 356 (2010).CrossRefGoogle Scholar
49.Hsiao, M-S., Zheng, J.X., Leng, S., Van Horn, R.M., Quirk, R.P., Thomas, E.L., Chen, H-L., Hsiao, B.S., Rong, L., Lotz, B., and Cheng, S.Z.D.: Crystal orientation change and its origin in one-dimensional nano-confinement constructed by polystyrene-block-poly(ethylene oxide) single crystal mats. Macromolecules 41, 8114 (2008).CrossRefGoogle Scholar
50.Huang, P., Zhu, L., Guo, Y., Ge, Q., Jing, A.J., Chen, W.Y., Quirk, R.P., Cheng, S.Z.D., Thomas, E.L., Lotz, B., Hsiao, B.S., Avila-Orta, C.A., and Sics, I.: Confinement size effect on crystal orientation changes of poly(ethylene oxide) blocks in poly(ethylene oxide)-b-polystyrene diblock copolymers. Macromolecules 37, 3689 (2004).CrossRefGoogle Scholar
51.Wunderlich, B.: Macromolecular Physics, Vol. 2 (Academic Press: New York, 1976).Google Scholar
52.Vyazovkin, S., Stone, J., and Sbirrazzuoli, N.: Hoffman-Lauritzen parameters for non-isothermal crystallization of poly(ethylene terephthalate) and poly(ethylene oxide) melts. J. Therm. Anal. Calorim. 80, 177 (2005).CrossRefGoogle Scholar
53.Escleine, J.M., Monasse, B., Wey, E., and Haudin, J.M.: Influence of specimen thickness on isothermal crystallization kinetics. A theoretical analysis. Colloid Polym. Sci. 262, 366 (1984).CrossRefGoogle Scholar
54.Gedde, U.W.: Polymer Physics, 1st ed. (Kluwer Academic Publishers. Dordrecht, 1995).Google Scholar
55.Damman, P., Coppee, S., Geskin, V.M., and Lazzaroni, R.: What is the mechanism of oriented crystal growth on rubbed polymer substrates? Topography vs epitaxy. J. Am. Chem. Soc. 124, 15166 (2002).CrossRefGoogle ScholarPubMed
56.Carvalho, J.L. and Dalnoki-Veress, K.: Homogeneous bulk, surface, and edge nucleation in crystalline nanodroplets. Phys. Rev. Lett. 105, 237801 (2010).CrossRefGoogle ScholarPubMed
57.Chatterjee, A.M. and Price, F.P.: Heterogeneous nucleation of crystallization of high polymers from the melt. I. Substrate-induced morphologies. J. Polym. Sci. Polym. Phys 13, 2368 (1975).Google Scholar
58.Chatterjee, A.M. and Price, F.P.: Heterogeneous nucleation of crystallization of high polymers from the melt. II. Aspects of transcrystallinity and nucleation density. J. Polym. Sci. Polym. Phys 13, 2385 (1975).CrossRefGoogle Scholar
59.Chatterjee, A.M. and Price, F.P.: Heterogeneous nucleation of crystallization of high polymers from the melt. III. Nucleation kinetics and interfacial energies. J. Polym. Sci. Polym. Phys 13, 2391 (1975).CrossRefGoogle Scholar
60.Artzi, N., Khatua, B.B., Tchoudakov, R., Narkis, M., Berner, A., Siegmann, A., and Lagaron, J.M.: Physical and chemical interactions in melt mixed nylon-6/EVOH blends. J. Macromol. Sci. 43, 605 (2004).CrossRefGoogle Scholar
61.Cheung, Y.W., Stein, R.S., Chu, B., and Wu, G.: Evolution of crystalline structures of poly(.epsilon.-caprolactone)/polycarbonate blends. 1. Isothermal crystallization kinetics as probed by synchrotron small-angle x-ray scattering. Macromolecules 27, 3589 (1994).CrossRefGoogle Scholar
62.Keroack, D., Yue, Z., and Prud’homme, R.E.: Molecular orientation in crystalline miscible blends. Polymer 40, 243 (1999).CrossRefGoogle Scholar
63.Di Lorenzo, M.L., Pietra, P.L., Errico, M.E., Righetti, M.C., and Angiuli, M.: Poly(butylene terephthalate)/poly(ε-caprolactone) blends: Miscibility and thermal and mechanical properties. Polym. Eng. Sci. 47, 323 (2007).CrossRefGoogle Scholar
64.Liu, R.Y.F., Jin, Y., Hiltner, A., and Baer, E.: Probing nanoscale polymer interactions by forced-assembly. Macromol. Rapid Commun. 24, 943 (2003).CrossRefGoogle Scholar
65.Liu, R.Y.F., Bernal-Lara, T.E., Hiltner, A., and Baer, E.: Interphase materials by force-assembly of glassy polymers. Macromolecules 37, 6972 (2004).CrossRefGoogle Scholar
66.Liu, R.Y.F., Bernal-Lara, T.E., Hiltner, A., and Baer, E.: Polymer interphase materials by forced assembly. Macromolecules 38, 4819 (2005).CrossRefGoogle Scholar
67.Liu, R.Y.F., Ranade, A.P., Wang, H.P., Bernal-Lara, T.E., Hiltner, A., and Baer, E.: Forced assembly of polymer nanolayers thinner than the interphase. Macromolecules 38, 10721 (2005).CrossRefGoogle Scholar
68.Schman, T., Nazarenko, S., Stepanov, E.V., Magonov, S.N., Hiltner, A., and Baer, E.: Solid state structure and melting behavior of interdiffused polyethylenes in microlayers. Polymer 40, 7373 (1999).CrossRefGoogle Scholar
69.Brandrup, J. and Immergut, E.H.: Polymer Handbook, 3rd ed. (John Wiley & Sons, 1989), p. 527.Google Scholar
70.Karam, H.J.: Polymer Compatibility and Incompatibility: Principles and Practices, edited by Solc, K. (MMI Press, Chur, 1982), pp. 93106.Google Scholar
71.Ponting, M., Keum, J., Freeman, B., Hiltner, A., and Baer, E.: Substrate effects on the confined crystallization of polycaprolactone in coextruded nanolayered films, in ANTEC 2011 Conference Proceedings, May 1–5, Boston, MA, 2011, p. 2328.Google Scholar
72.Jin, Y., Rogunova, M., Hiltner, A., Baer, E., Nowacki, R., Galeski, A., and Piorkowska, E.: Structure of polypropylene crystallized in confined nanolayers. J. Polym. Sci., Part B: Polym. Phys. 42, 3380 (2004).CrossRefGoogle Scholar
73.Bernal-Lara, T.E., Liu, R.Y.F., Hiltner, A., and Baer, E.: Structure and thermal stability of polyethylene nanolayers. Polymer 46, 3043 (2005).CrossRefGoogle Scholar
74.Bernal-Lara, T.E., Masirek, R., Hiltner, A., Baer, E., Piorkowska, E., and Galeski, A.: Morphology studies of multilayered HDPE/PS systems. J. Appl. Polym. Sci. 99, 597 (2006).CrossRefGoogle Scholar
75.Mezghani, K., Campbell, R.A., and Phillips, P.J.: Lamellar thickening and the equilibrium melting point of polypropylene. Macromolecules 27, 997 (1999).CrossRefGoogle Scholar
76.Bartczak, Z., Galeski, A., and Krasnikova, N.P.: Primary nucleation and spherulite growth rate in isotactic polypropylene-polystyrene blends. Polymer (Guildf.) 28, 1627 (1987).CrossRefGoogle Scholar
77.Nowacki, R., Kolasinska, J., and Piorkowska, E.: Cavitation during isothermal crystallization of isotactic polypropylene. J. Appl. Polym. Sci. 79, 2439 (2001).3.0.CO;2-#>CrossRefGoogle Scholar
78.Galeski, A. and Piorkowska, E.: Localized volume deficiencies as an effect of spherulite growth. I. The two-dimensional case. J. Polym. Sci., Polym. Phys. Ed. 21, 1299 (1983).CrossRefGoogle Scholar
79.Norton, D.R. and Keller, A.: The spherulitic and lamellar morphology of melt-crystallized isotactic polypropylene. Polymer 26, 704 (1985).CrossRefGoogle Scholar
80.Lotz, B., Wittmann, J.C., and Lovinger, A.J.: Structure and morphology of poly(propylenes): A molecular analysis. Polymer) 37, 4979 (1996).CrossRefGoogle Scholar
81.Langhe, D.S., Hiltner, A., and Baer, E.: Melt crystallization of syndiotactic polypropylene in nanolayer confinement impacting structure. Polymer 52, 5879 (2011).CrossRefGoogle Scholar
82.Harasawa, J., Uehara, H., Yamanobe, T., and Terano, M.: Morphology of drawn syndiotactic polypropylene films. J. Mol. Struct. 610, 133 (2002).CrossRefGoogle Scholar
83.Lovinger, A., Lotz, B., Davis, D.D., and Padden, F.J. Jr.: Structure and defects in fully syndiotactic polypropylene. Macromolecules 26, 3494 (1993).CrossRefGoogle Scholar
84.Lovinger, A., Lotz, B., Davis, D.D., and Schumacher, M.: Morphology and thermal properties of fully syndiotactic polypropylene. Macromolecules 27, 6603 (1994).CrossRefGoogle Scholar
85.Lovinger, A.: Ferroelectric polymers. Science 220, 1115 (1983).CrossRefGoogle ScholarPubMed
86.Mackey, M., Hiltner, A., Baer, E., Flandin, L., Wolak, M., and Shirk, J.: Enhanced breakdown strength of multilayered films fabricated by forced assembly microlayer coextrusion. J. Phys. D Appl. Phys. 42, 175304 (2009).CrossRefGoogle Scholar
87.Ueberschlag, P.: PVDF piezoelectric polymer. Sensor Review 21, 118 (2001).CrossRefGoogle Scholar
88.Choi, S.W., Jo, S.M., Lee, W.S., and Kim, Y-R.: An electrospun poly(vinylidene fluoride) nanofibrous membrane and its battery applications. Adv. Mater. 15, 2027 (2003).CrossRefGoogle Scholar
89.Nalwa, H.S.: Ferroelectric Polymers: Chemistry, Physics and Applications (CRC Press: New York, 1995).CrossRefGoogle Scholar
90.Mackey, M., Flandin, L., Hiltner, A., Baer, E.: Confined crystallization of PVDF and PVDF-TFE copolymer in nanolayered films. J. Polym. Sci., Part B: Polym. Phys. 49, 1750 (2011).CrossRefGoogle Scholar
91.Lovinger, A.J. and Keith, H.D.: Electron diffraction investigation of a high-temperature form of poly(vinylidene fluoride). Macromolecules 12, 919 (1979).CrossRefGoogle Scholar
92.Mandelkern, L.: Crystallization of Polymers (Cambridge University Press: Cambridge, United Kingdom, 2002).Google Scholar
93.Lin, Y.J., Hiltner, A., and Baer, E.: A new method for achieving nanoscale reinforcement of biaxial oriented polypropylene film. Polymer 51, 4218 (2010).CrossRefGoogle Scholar
94.Lin, Y.J., Hiltner, A., and Baer, E.: Nanolayer enhancement of biaxially oriented polypropylene film for increased gas barrier. Polymer 51, 5807 (2010).CrossRefGoogle Scholar
95.Balta-Calleja, F.J., Ania, F., Puente-Orench, I., Baer, E., Hiltner, A., Bernal, T., and Funari, S.S.: Nanostructure development in multilayered polymer systems as revealed by x-ray scattering methods. Prog. Colloid Polym. Sci. 130, 140 (2005).Google Scholar
96.Ania, F., Puente-Orench, I., Balta-Calleja, F.J., Khariwala, D., Hiltner, A., Baer, E., and Roth, S.V.: Ultra-small-angle x-ray scattering study of PET/PC nanolayers and comparison to AFM results. Macromol. Chem. Phys. 209, 1367 (2008).CrossRefGoogle Scholar
97.Flores, A., Arribas, C., Fauth, F., Khariwala, D., Hiltner, A., Baer, E., Balta-Calleja, F., and Ania, F.: Finite size effects in multilayered polymer systems: Development of PET lamellae under physical confinement. Polymer 51, 4530 (2010).CrossRefGoogle Scholar
98.Adhikari, R., Seydewitz, V., Loschner, K., Michler, G.H., Hiltner, A., and Baer, E.: Structure and properties of multilayered PET/PC composites. Macromol. Symp. 290, 156 (2010).CrossRefGoogle Scholar
99.Orench, I.P., Ania, F., Baer, E., Hiltner, A., Bernal, T., and Balta-Calleja, F.J.: Basic aspects of microindentation in multilayered poly(ethylene terephthalate)/polycarbonate films. Philos. Mag. 84, 1841 (2004).CrossRefGoogle Scholar
100.Lai, C., Ayyer, R., Hiltner, A., and Baer, E.: Effect of confinement on the relaxation behavior of poly(ethylene oxide). Polymer 51, 1820 (2010).CrossRefGoogle Scholar
101.Burt, T.M., Keum, J.K., Hiltner, A., Baer, E., and Korley, L.T.J.: Confinement of elastomeric block copolymers via forced assembly coextrusion. ACS Appl. Mater. Interfaces 3 4804 (2011).CrossRefGoogle ScholarPubMed