Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-28T05:00:00.525Z Has data issue: false hasContentIssue false

THE ORIENTATION RESPONSE OF CTEMCERA DESTRUCTOR AND OTHER WIRE WORMS (COLEOPTERA: ELATERIDAE) TO GERMINATING GRAIN AND TO CARBON DIOXIDE1

Published online by Cambridge University Press:  31 May 2012

Abstract

Several species of wireworms were attracted to germinating wheat, air from flasks of germinating wheat, decomposing oatmeal, commercial CO2 and, in addition, germinating seeds of eight other cultivated plant species. Larvae located a biological or experimental source of CO2 by a directed movement along CO2 gradients, from distances up to 20 cm.

Methods and apparatus for measuring small CO2 gradients, using gas chromatography and mass spectrometry, are described. Ctenicera destructor (Brown) larvae apparently responded to CO2 gradients between glass plates, that ascended on the average by 0.002% (soil) and 0.005% (agar)/cm over a distance of from 12 to 16 cm. The "sensitivity threshold" was calculated as being 1–2 ppm over the distance involved in one deflection of the head during klinotactic orientation. Attractancy was observed within a range of CO2 concentration from about 0.036% to 1.5%. Repellent effects did not appear to be only related to concentration, but possibly were due to steepness of the gradient and(or) previous exposure to CO2.

Passing an air stream from germinating grain over a KOH solution eliminated the attractancy of the grain by removing the CO2 and possibly other undetected attractants. A small percentage of C. destructor larvae apparently oriented to an ethylene source, but it was concluded the CO2 was the most important if not the only attractant from germinating wheat seeds.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brown, A. W. A., Sarkaria, D. S., and Thompson, R. P.. 1951. Studies on the responses of the female Aedes mosquito. Part 1 — The search for attractant vapours. Bull. ent. Res. 42: 105114.CrossRefGoogle Scholar
Burrage, R. H. 1963. Seasonal feeding of the larvae of Ctenicera destructor and Hypolithus bicolor (Coleoptera: Elateridae) on potatoes placed in the field at weekly intervals. Ann. ent. Soc. Am. 56: 306313.CrossRefGoogle Scholar
Burrage, R. H. 1964. Trends in damage by wireworms (Coleoptera: Elateridae) in grain crops in Saskatchewan, 1954–1961. Can. J. Pl. Sci. 44: 515519.CrossRefGoogle Scholar
Crombie, A. C. and Darrah, J. H.. 1947. The chemoreceptors of wireworms (Agriotes spp.) and the relation of activity to chemical constitution. J. exp. Biol. 24: 95109.CrossRefGoogle ScholarPubMed
Davis, G. R. F. 1961. The biting response of larvae of the prairie grain wireworm, Ctenicera aeripennis destructor (Brown) (Coleoptera: Elateridae), to various extracts of germinating rye seed. Can. J. Zool. 39: 299303.CrossRefGoogle Scholar
Dethier, V. G., Browne, L. B., and Smith, C. N.. 1960. The designation of chemicals in terms of the responses they elicit from insects. J. econ. Ent. 53: 134136.CrossRefGoogle Scholar
Eidt, D. C. 1953. European wireworms in Canada with particular reference to Nova Scotian infestations. Can. Ent. 85: 408414.CrossRefGoogle Scholar
Fraenkel, G. S. and Gunn, D. L.. 1961. The orientation of animals. Dover Publ., New York.Google Scholar
Johnson, R. N. and Viglierchio, D. R.. 1961. The accumulation of plant parasitic nematode larvae around carbon dioxide and oxygen. Proc. helm. Soc. Wash. 28: 171174.Google Scholar
Kellogg, F. E. 1970. Water vapour and carbon dioxide receptors in Aedes aegypti. J. Insect Physiol. 16: 99108.CrossRefGoogle ScholarPubMed
Klingler, J. 1957. Über die Bedeutung des Kohlendioxyds für die Orientierung der Larven von Otiorrhynchus sulcatus F., Melolontha und Agriotes (Col.) im Boden (Vorläufige Mitteilung). Mitt. schweiz. ent. Ges. 30: 317322.Google Scholar
Klingler, J. 1958. Die Bedeutung der Kohlendioxyd-Ausscheidung der Wurzeln für die Orientierung der Larven von Otiorrhynchus sulcatus F. und anderer bodenbewohnender phytophager Insektenarten. Mitt. schweiz. ent. Ges. 31: 205269.Google Scholar
Klingler, J. 1959. Anziehung von Collembolen und Nematoden durch Kohlendioxyd-Quellen. Mitt. schweiz. ent. Ges. 32: 311316.Google Scholar
Klingler, J. 1961. Anziehungsversuche mit Ditylenchus dipsaci unter Beriicksichtigung der Wirkung des Kohlendioxyds, des Redoxpotentials und anderer Faktoren. Nematologica 6: 6984.CrossRefGoogle Scholar
Klingler, J. 1963. Die Orientierung von Ditylenchus dipsaci in gemessenen künstlichen und biologischen CO2–Gradienten. Nematologica 9: 185199.CrossRefGoogle Scholar
Klingler, J. 1965. On the orientation of plant nematodes and some other soil animals. Nematologica 11: 418.CrossRefGoogle Scholar
Kreutzer, W. A. 1960. Soil treatment. In Horsfall, J. G. and Dimond, A. E. (Ed.), Plant pathology, an advanced treatise. Academic Press, New York.Google Scholar
Kreutzer, W. A. 1965. The reinfestation of treated soil. In Baker, K. F. and Snyder, W. C. (Ed.), Ecology of soil-borne plant pathogens; prelude to biological control. University of California Press, Berkeley.Google Scholar
Meeking, J. M., Seabrook, W. D., and Paim, U.. 1974. Perception of carbon dioxide by larvae of Orthosoma brunneum (Coleoptera: Cerambycidae) as indicated by recordings from the ventral nerve cord. Can. Ent. 106: 257262.CrossRefGoogle Scholar
Meheriuk, M. and Spencer, M.. 1964. Ethylene production during germination of oat seeds and Penicillium digitatum spores. Can. J. Bot. 42: 337340.CrossRefGoogle Scholar
Moursi, A. A. 1962. The attractiveness of CO2 and N2 to soil arthropods. Pedobiologia 1: 299302.CrossRefGoogle Scholar
Moursi, A. A. 1970. Behavior of soil arthropods toward gases. Bull. ent. Soc. Egypt (Econ. Ser.) 4: 237239.Google Scholar
Paim, U. and Beckel, W. E.. 1964. The behavior of the larvae of Orthosoma brunneum (Forster) (Coleoptera, Cerambycidae) in relation to gases found in the logs inhabited by the larvae. Can. J. Zool. 42: 327353.CrossRefGoogle Scholar
Russel, E. J. 1950. Soil conditions and plant growth. Longmans, Green, London.Google Scholar
Städler, E. 1971. Uber die Orientierung und das Wirtswahlverhalten der Möhrenfliege, Psila rosae F. (Diptera: Psilidae). I. Larven. Z. angew. Ent. 69: 425438.CrossRefGoogle Scholar
Städler, E. 1972. Über die Orientierung und das Wirtswahlverhalten der Möhrenfliege, Psila rosae F. (Diptera: Psilidae). II. Imagines. Z. angew. Ent. 70: 2961.CrossRefGoogle Scholar
Stiles, W. 1960. Respiration in seed germination and seedling development. Handb. PflPhysiol. 12: 465492.Google Scholar
Stone, M. W. and Foley, F. B.. 1955. Effect of season, temperature, and food on the movement of the sugar-beet wireworm. Ann. ent. Soc. Am. 48: 308312.CrossRefGoogle Scholar
Taylor, D. L. 1942. Influence of oxygen tension on respiration, fermentation and growth of wheat and rice. Am. J. Bot. 29: 721738.CrossRefGoogle Scholar
Thomas, C. A. 1940. The biology and control of wireworms; a review of the literature. Bull. Penn. agric. Exp. Stn, No. 392. 90 pp.Google Scholar
Thorpe, W. A., Crombie, A. C., Hill, R., and Darrah, J. H.. 1947. The behavior of wireworms in response to chemical stimulation. J. exp. Biol. 23: 234266.CrossRefGoogle ScholarPubMed
Umbreit, W. W., Burris, R. H., and Stauffer, J. F.. 1964. Manometric techniques. Burgess, Minneapolis.Google Scholar
Westcott, N. D., Lee, Y. W., and Doane, J. F.. Determination of low concentrations of carbon dioxide by GC-mass spectrometry using a single ion monitoring method. (In preparation.)Google Scholar
Willis, E. R. and Roth, L. M.. 1952. Reactions of Aedes aegypti (L.) to carbon dioxide. J. exp. Zool. 121: 149179.CrossRefGoogle Scholar
Willis, E. R. and Roth, L. M.. 1954. Reactions of flour beetles of the genus Tribolium to carbon dioxide and dry air. J. exp. Zool. 127: 117152.CrossRefGoogle Scholar
Wright, R. H. and Kellogg, F. E.. 1962. Response of Aedes aegypti to moist convection currents. Nature 194: 402403.CrossRefGoogle ScholarPubMed
Zacharuk, R. Y. 1962. Distribution, habits, and development of Ctenicera destructor (Brown) in Western Canada, with notes on the related species C. aeripennis (Kby.) (Coleoptera: Elateridae). Can. J. Zool. 40: 539552.CrossRefGoogle Scholar
Zacharuk, R. Y. 1963. Comparative food preferences of soil-, sand-, and wood-inhabiting wireworms (Coleoptera, Elateridae). Bull. ent. Res. 54: 161165.CrossRefGoogle Scholar