Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-27T17:53:42.286Z Has data issue: false hasContentIssue false

Genomic resources for improving food legume crops

Published online by Cambridge University Press:  30 June 2011

J. KUMAR
Affiliation:
Division of Crop Improvement, Indian Institute of Pulses Research, Kanpur 208 024, India
A. PRATAP
Affiliation:
Division of Crop Improvement, Indian Institute of Pulses Research, Kanpur 208 024, India
R. K. SOLANKI
Affiliation:
Division of Crop Improvement, Indian Institute of Pulses Research, Kanpur 208 024, India
D. S. GUPTA
Affiliation:
Division of Crop Improvement, Indian Institute of Pulses Research, Kanpur 208 024, India
A. GOYAL*
Affiliation:
Agriculture and Agri Food Canada, Lethbridge Research Center, Lethbridge, Alberta, Canada
S. K. CHATURVEDI
Affiliation:
Division of Crop Improvement, Indian Institute of Pulses Research, Kanpur 208 024, India
N. NADARAJAN
Affiliation:
Division of Crop Improvement, Indian Institute of Pulses Research, Kanpur 208 024, India
S. KUMAR
Affiliation:
International Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo, Syria
*
*To whom all correspondence should be addressed. Email: akgroyal@gmail.com;jitendra@gmail.com

Summary

Food legumes are the main source of dietary protein for a large part of the world's population, and also play an important role in maintaining soil fertility through nitrogen fixation. However, legume yields and production are often limited by large genotype×environment (G×E) interactions that influence the expression of agronomically important, complex quantitative traits. Consequently, genetic improvement has been slower than expected. Molecular marker technology enables genetic dissection of such complex traits, allowing breeders to identify genomic regions on the chromosome that have main effects or interactive effects. A number of genomic resources have been developed in several legume species during the last two decades, and provide a platform for exploiting marker technology. The present paper reviews the available genomic resources in food legumes: linkage maps, high-throughput sequencing technologies, expression sequence tag (EST) databases, genome sequences, DNA chips, targeting induced local lesions in genomes (TILLING), bacterial artificial chromosome (BAC) libraries and others. It also describes how these resources are being used to tag and map genes/quantitative trait loci (QTLs) for domesticated and other agronomically important traits. This information is important to genetic improvement efforts aiming at improving food and nutrition security worldwide.

Type
Crops and Soils Review
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adam-Blondon, A. F., Sévignac, M., Bannerot, H. & Dron, M. (1994). SCAR, RAPD and RFLP markers linked to a dominant gene (Are) conferring resistance to anthracnose in common bean. Theoretical and Applied Genetics 88, 865870.CrossRefGoogle ScholarPubMed
Ahmad, F., Khan, A. I., Awan, F. S., Sadia, B., Sadaqat, H. A. & Bahadur, S. (2010). Genetic diversity of chickpea (Cicer arietinum L.) germplasm in Pakistan as revealed by RAPD analysis. Genetics and Molecular Research 9, 14141420.CrossRefGoogle ScholarPubMed
AICRP on MULLaRP (2009–10). Annual Project Report (2009–10). Kanpur, India: Indian Institute of Pulses Research (IIPR).Google Scholar
Allen, R. S., Millgate, A. G., Chitty, J. A., Thistleton, J., Miller, J. A. C., Fist, A. J., Gerlach, W. L. & Larkin, P. J. (2004). RNAi-mediated replacement of morphine with the non-narcotic alkaloid reticuline in opium poppy. Nature Biotechnology 22, 15591566.CrossRefGoogle Scholar
Alzate-Marin, A. L., Menarim, H., De Arruda, M. C. C., Chagas, J. M., De Barros, E. G. & Moreira, M. A. (1999). Backcross assisted by RAPD markers for the introgression of Co-4 and Co-6 anthracnose resistant genes in common bean cultivars. Annual Report of the Bean Improvement Cooperative 42, 1516.Google Scholar
Anbessa, Y., Tar'an, B., Warkentin, T. D., Tullu, A. & Vandenberg, A. (2009). Genetic analyses and conservation of QTL for ascochyta blight resistance in chickpea (Cicer arietinum L.). Theoretical and Applied Genetics 119, 757765.CrossRefGoogle ScholarPubMed
Arelli, P. R. & Young, L. D. (2009). JTN-5109 soybean germplasm resistant to nematode population infecting cv. Hartwig. In Footprints in the Landscape: Sustainability through Plant and Soil Science. Proceedings of the ASA-CSSA-SSSA Annual Meeting, 1–5 November 2009, Pittsburgh, PA. Paper no. 268–18, p. 133. Madison, MI, USA: ASA-CSSA-SSSA (http://a-c-s.confex.com/crops/2009am/webprogram/Paper51979.html, verified 11 May 2011).Google Scholar
Arelli, P. R., Young, L. D. & Mengistu, A. (2006). Registration of high yielding and multiple disease resistant soybean germplasm JTN-5503. Crop Science 46, 27232724.CrossRefGoogle Scholar
Arelli, P. R., Pantalone, V. R., Allen, F. L. & Mengistu, A. (2007). Registration of soybean germplasm JTN-5303. Journal of Plant Registrations 1, 6970.CrossRefGoogle Scholar
Aubert, G., Morin, J., Jacquin, F., Loridon, K., Quillet, M. C., Petit, A., Rameau, C., Lejeune-Henaut, I., Huguet, T. & Burstin, J. (2006). Functional mapping in pea, as an aid to the candidate gene selection and for investigating synteny with the model legume Medicago truncatula. Theortical and Applied Genetics 112, 10241041.CrossRefGoogle Scholar
Avila, C. M., Sillero, J. C., Rubiales, D., Moreno, M. T. & Torres, A. M. (2003). Identification of RAPD markers linked to the Uvf-1 gene conferring hypersensitive resistance against rust (Uromyces viciae-fabae) in Vicia Faba L. Theoretical and Applied Genetics 107, 353358.CrossRefGoogle Scholar
Aziz, N., Paiva, N. L., May, G. D. & Dixon, R. A. (2005). Transcriptome analysis of alfalfa glandular trichomes. Planta 221, 2838.CrossRefGoogle ScholarPubMed
Bachlava, E., Dewey, R. E., Burton, J. W. & Cardinal, A. J. (2009). Mapping candidate genes for oleate biosynthesis and their association with unsaturated fatty acid seed content in soybean. Molecular Breeding 23, 337347.CrossRefGoogle Scholar
Bachman, M. S., Tamulonis, J. P., Nickell, C. D. & Bent, A. F. (2001). Molecular markers linked to brown stem rot resistance genes, Rbs1 and Rbs2, in soybean. Crop Science 41, 527535.CrossRefGoogle Scholar
Baier, M. C., Barsch, A., Kuster, H. & Hohnjec, N. (2007). Antisense repression of the Medicago truncatula nodule-enhanced sucrose synthase leads to a handicapped nitrogen fixation mirrored by specific alterations in the symbiotic transcriptome and metabolome. Plant Physiology 145, 16001618.CrossRefGoogle ScholarPubMed
Basak, J., Kundagrami, S., Ghose, T. K. & Pal, A. (2004). Development of yellow mosaic virus (YMV) resistance linked DNA marker in Vigna mungo from populations segregating for YMV-reaction. Molecular Breeding 14, 375382.CrossRefGoogle Scholar
Beavis, W. (2004). Legume Information Resources. Davis, CA: University of California, Davis. Available online at http://catg.ucdavis.edu/Legume%20information%20resources-wdb.pdf (verified 12 May 2011).Google Scholar
Bellaloui, N., Mengistu, A. & Paris, R. L. (2008). Soybean seed composition in cultivars differing in resistance to charcoal rot (Macrophomina phaseolina). Journal of Agricultural Science, Cambridge 146, 667675.CrossRefGoogle Scholar
Benedito, V. A., Torres-Jerez, I., Murray, J. D., Andriankaja, A., Allen, S., Kakar, K., Wandrey, M., Verdier, J., Zuber, H., Ott, T., Moreau, S., Niebel, A., Frickey, T., Weiller, G., He, J., Dai, X., Zhao, P. X., Tang, Y. & Udvardi, M. K. (2008). A gene expression atlas of the model legume Medicago truncatula. Plant Journal 55, 504513.CrossRefGoogle ScholarPubMed
Benlloch, R., D'erfurth, I., Ferrandiz, C., Cosson, V., Beltran, J. P., Canas, L. A., Kondorosi, A., Madueno, F. & Ratet, P. (2006). Isolation of mtpim proves Tnt1 a useful reverse genetics tool in Medicago truncatula and uncovers new aspects of AP1-like functions in legumes. Plant Physiology 142, 972983.CrossRefGoogle ScholarPubMed
Bennett, M. D. & Leitch, I. J. (2010). Plant DNA C-values Database Release 5.0. London: Kew Databases. Available online at http://data.kew.org/cvalues/ (verified 12 May 2011).Google Scholar
Bernardo, R. (2010 a). Potential and practicality of genomewide selection in plants. In Plant and Animal Genomes XVIII Conference, 9–13 January, San Diego, CA. Article W297. San Diego, CA, USA. Abstract available online at http://www.intl-pag.org/18/abstracts/W38_PAGXVIII_297.html (verified 12 May 2011).Google Scholar
Bernardo, R. (2010 b). Genomewide selection with minimal crossing in self-pollinated crops. Crop Science 50, 624627.CrossRefGoogle Scholar
Bian, X. Y., Ford, R., Han, T. Y., Coram, T. E., Pang, E. C. K. & Taylor, P. W. J. (2007). Approaching chickpea quantitative trait loci conditioning resistance to Ascochyta rabiei via comparative genomics. Australasian Plant Pathology 36, 419423.CrossRefGoogle Scholar
Blair, M. W., Pedraza, F., Buendia, H. F., Gaitan-Solis, E., Beebe, S. E., Gepts, P. & Tohme, J. (2003). Development of a genome-wide anchors microsatellite map for common bean (Phaseolus vulgaris L.). Theoretical and Applied Genetics 107, 13621374.CrossRefGoogle ScholarPubMed
Blair, M. W., Rodriguez, L. M., Pedraza, F., Morales, F. & Beebe, S. (2007). Genetic mapping of the bean golden yellow mosaic geminivirus resistant gene bgm-1 & linkage with potyvirus resistance in common bean (Phaseolus vulgaris L.). Theoretical and Applied Genetics 114, 261271.CrossRefGoogle ScholarPubMed
Boukar, O., Kong, L., Singh, B. B., Murdock, L. & Ohm, H. W. (2004). AFLP and AFLP-derived SCAR markers associated with Striga gesneriodes resistance in cowpea. Crop Science 44, 12591264.CrossRefGoogle Scholar
Buhariwalla, H. K., Jayashree, B., Eshwar, K. & Crouch, J. H. (2005). Development of ESTs from chickpea roots and their use in diversity analysis of the Cicer genus. BMC Plant Biology 5, 16. DOI: 10.1186/1471-2229-5-16.CrossRefGoogle ScholarPubMed
Buitink, J., Leger, J. J., Guisle, I., Vu, B. L., Wuilleme, S., Lamirault, G., Le Bars, A., Le Meur, N., Becker, A., Kuster, H. & Leprince, O. (2006). Transcriptome profiling uncovers metabolic and regulatory processes occurring during the transition from desiccation-sensitive to desiccation-tolerant stages in Medicago truncatula seeds. Plant Journal 47, 735750.CrossRefGoogle ScholarPubMed
Canci, H. & Toker, C. (2009). Evaluation of yield criteria for drought and heat resistance in chickpea (Cicer arietinum L.). Journal of Agronomy and Crop Science 195, 4754.CrossRefGoogle Scholar
Cardinal, A. J., Burton, J., Camacho-Roger, A. M., Zeng, J. H., Wilson, R. F. & Dewey, R. E. (2007). Molecular analysis of soybean lines with low palmitic acid content in the seed oil. Crop Science 47, 304310.CrossRefGoogle Scholar
Chaitieng, B., Kaga, A., Han, O. K., Wang, X. W., Wongkaew, S., Laosuwan, P., Tomooka, N. & Vaughan, D. A. (2002). Mapping a new source of resistance to powdery mildew in Mungbean. Plant Breeding 121, 521525.CrossRefGoogle Scholar
Chaitieng, B., Kaga, A., Tomooka, N., Isemura, T., Kuroda, Y. & Vaughan, D. A. (2006). Development of a black gram (Vigna mungo (L.) Hepper) linkage map and its comparison with an azuki bean (Vigna angularis (Wild) Ohwi and Ohashi linkage map. Theoretical and Applied Genetics 113, 12611269.CrossRefGoogle Scholar
Chaky, J. M., Specht, J. E. & Cregan, P. B. (2003). Advanced backcross QTL analysis in a mating between Glycine max and Glycine soja. In Plant and Animal Genomes XII Conference, 10–14 January 2004, San Diego, California. Abstracts. Poster P545. San Diego, CA, USA. Available online at: http://www.intl-pag.org/12/abstracts/P5f_PAG12_545.html (verified 12 May 2011).Google Scholar
Chamarthi, S. K., Kumar, A., Voung, T. D., Blair, M. W., Gaur, P. M., Nguyen, H. T. & Varshney, R. K. (2010, in press). Trait mapping and molecular breeding. In Biology and Breeding of Food Legumes (Eds Pratap, A. & Kumar, J.). Wallingford, UK: CAB International.Google Scholar
Chandran, D., Sharopova, N., Ivashuta, S., Gantt, J. S., Vandenbosch, K. A. & Samac, D. A. (2008). Transcriptome profiling identified novel genes associated with aluminum toxicity, resistance and tolerance in Medicago truncatula. Planta 228, 151166.CrossRefGoogle ScholarPubMed
Charlson, D. V., Bailey, T. B., Cianzio, S. R. & Shoemaker, R. C. (2005). Molecular marker satt481 is associated with iron-deficiency chlorosis resistance in a soybean breeding population. Crop Science 45, 23942399.CrossRefGoogle Scholar
Chen, H. M., Liu, C. A., Kuo, C. G., Chein, C. M., Sun, H. C., Huang, C. C., Lin, Y. C. & Ku, H. M. (2007 a). Development of a molecular marker for a bruchid (Callosobruchus chinensis L.) resistance gene in Mungbean. Euphytica 157, 113122.CrossRefGoogle Scholar
Chen, J. B., Wang, S. M., Jing, R. L. & Mao, X. G. (2009). Cloning the PvP5CS gene from common bean (Phaseolus vulgaris) and its expression patterns under abiotic stresses. Journal of Plant Physiology 166, 1219.CrossRefGoogle ScholarPubMed
Chen, J., Zhang, X., Jing, R., Blair, M. W., Mao, X. & Wang, S. (2010). Cloning and genetic diversity analysis of a new P5CS gene from common bean (Phaseolus vulgaris L.). Theoretical and Applied Genetics 120, 13931404.CrossRefGoogle ScholarPubMed
Chen, X., Laudeman, T. W., Rushton, P. J., Spraggins, T. A. & Timko, M. P. (2007 b). CGKB: an annotation knowledge base for cowpea (Vigna unguiculata L.) methylation filtered genomic genespace sequences. BMC Bioinformatics 8, 129. DOI: 10.1186/1471-2105-8-129.CrossRefGoogle ScholarPubMed
Cho, S., Chen, W. & Muehlbauer, F. J. (2004). Pathotype-specific genetic factors in chickpea (Cicer arietinum L.) for quantitative resistance to ascochyta blight. Theoretical and Applied Genetics 109, 733739.CrossRefGoogle ScholarPubMed
Choi, H. K., Kim, D., Uhm, T., Limpens, E., Lim, H., Mun, J. H., Kalo, P., Penmetsa, R. V., Seres, A., Kulikova, O., Roe, B. A., Bisseling, T., Kiss, G. B. & Cook, D. R. (2004 a). A sequence-based genetic map of Medicago truncatula and comparison of marker co-linearity with Medicago sativa. Genetics 166, 14631502.CrossRefGoogle Scholar
Choi, H. K., Mun, J. H., Kim, D. J., Zhu, H., Baek, J. M., Mudge, J., Roe, B. A., Ellis, N., Doyle, J., Kiss, G. B., Young, N. D. & Cook, D. R. (2004 b). Estimating genome conservation between crop and model legume species. Proceedings of the National Academy of Sciences of the United States of America 101, 1528915294.CrossRefGoogle ScholarPubMed
Chowdhery, M. A., Andrahennadi, C. P., Slinkard, A. E. & Vandenberg, A. (2001). RAPD and SCAR markers for resistance to ascochyta blight in lentil. Euphytica 118, 331337.CrossRefGoogle Scholar
Cobos, M. J., Fernandez, M. J., Rubio, J., Kharrat, M., Moreno, M. T., Gil, J. & Millan, T. (2005). A linkage map of chickpea (Cicer arietinum L.) based on populations from Kabuli×Desi crosses: location of genes for resistance to fusarium wilt race 0. Theoretical and Applied Genetics 110, 13471353.CrossRefGoogle Scholar
Commodity Online (2009). India's Green Revolution that bypassed Pulses. Available Online at: http://www.commodityonline.com/news/Indias-Green-Revolution-that-bypassed-pulses-15163-3-1.html (verified 11 May 2011).Google Scholar
Concibido, V. C., Diers, B. W. & Arelli, P. R. (2004). A decade of QTL mapping for cyst nematode resistance in soybean. Crop Science 44, 11211131.CrossRefGoogle Scholar
Concibido, V. C., La Vallee, B., Mclaird, P., Pineda, N., Meyer, J., Hummel, L., Yang, J., Wu, K. & Delannay, X. (2003). Introgression of a quantitative trait locus for yield from Glycine soja into commercial soybean cultivars. Theoretical and Applied Genetics 106, 575582.CrossRefGoogle ScholarPubMed
Constantin, G. D., Krath, B. N., Macfarlane, S. A., Nicolaisen, M., Johansen, I. E. & Lund, O. S. (2004). Virus-induced gene silencing as a tool for functional genomics in a legume species. Plant Journal 40, 622631.CrossRefGoogle Scholar
Contour-Ansel, D., Torres-Franklin, M. L., Cruz, D. E., Carvalho, M. H., D'Arcy-Lameta, A. & Zuily-Fodil, Y. (2006). Glutathione reductase in leaves of cowpea: cloning of two cDNAs, expression and enzymatic activity under progressive drought stress desiccation and abscisic acid treatment. Annals of Botany 98, 12791287.CrossRefGoogle ScholarPubMed
Cooper, J. L., Till, B. J., Laport, R. G., Darlow, M. C., Kleffner, J. M., Jamai, A., El- Mellouki, T., Liu, S., Ritchie, R., Nielsen, N., Bilyeu, K. D., Meksem, K., Comai, L. & Henikoff, S. (2008). TILLING to detect induced mutations in soybean. BMC Plant Biology 8, 9. DOI: 10.1186/1471-2229-8-9.CrossRefGoogle ScholarPubMed
Coram, T. E. & Pang, E. C. K. (2005 a). Isolation and analysis of candidate ascochyta blight defense genes in chickpea. Part I. Generation and analysis of an expressed sequence tag (EST) library. Physiological and Molecular Plant Pathology 66, 192200.CrossRefGoogle Scholar
Coram, T. E. & Pang, E. C. K. (2005 b). Isolation and analysis of candidate ascochyta blight defense genes in chickpea. Part II. Microarray expression analysis of putative defence-related ESTs. Physiological and Molecular Plant Pathology 66, 201210.CrossRefGoogle Scholar
Coram, T. E., Mantri, N. L., Ford, R. & Pang, E. C. K. (2007). Functional genomics in chickpea: an emerging frontier. Functional Plant Biology 34, 861873.CrossRefGoogle ScholarPubMed
Coyne, C. J., Mcclendon, M. T., Walling, J. G., Timmerman-Vaughan, G. M., Murray, S., Meksem, K., Lightfoot, D. A., Shultz, J. L., Keller, K. E., Martin, R. R., Inglis, D. A., Rajesh, P. N., Mcphee, K. E., Weeden, N. F., Grusak, M. A., Li, C. M. & Storlie, E. W. (2007). Construction and characterization of two bacterial artificial chromosome libraries of pea (Pisum sativum L.) for the isolation of economically important genes. Genome 50, 871875.CrossRefGoogle ScholarPubMed
Cregan, P. B., Mudge, J., Fickus, E. W., Danesh, D., Denny, R. & Young, N. D. (1996). Two simple sequence repeat markers to select for soybean cyst nematode resistance conditioned by the rhg1 locus. Theoretical and Applied Genetics 99, 811818.CrossRefGoogle Scholar
Cregan, P. B., Jarvik, T., Bush, A. L., Shoemaker, R. C., Lark, K. G., Kahler, A. L., Kaya, N., Vantoai, T. T., Lohnes, D. G., Chung, J. & Specht, J. E. (1999 a). An integrated genetic linkage map of the soybean genome. Crop Science 39, 14641490.CrossRefGoogle Scholar
Cregan, P. B., Mudge, J., Fickus, E. W., Marek, L. F., Danesh, D., Denny, R., Shoemaker, R. C., Matthews, B. F., Jarvik, T. & Young, N. D. (1999 b). Targeted isolation of simple sequence repeat markers through the use of bacterial artificial chromosomes. Theoretical and Applied Genetics 98, 919928.CrossRefGoogle Scholar
D'Arcy-Lameta, A., Ferrari-Iliou, R., Contour-Ansel, D., Pham-Thi, A.-T. & Zuily-Fodil, Y. (2006). Isolation and characterization of four ascorbate peroxidase cDNAs responsive to water deficit in cowpea leaves. Annals of Botany 97, 133140.CrossRefGoogle ScholarPubMed
De Oliveira, E. J., Alzate-Marin, A. L., Borem, A., De Azeredo Fagundes, S., De Barros, E. G. & Moreira, M. A. (2005). Molecular marker-assisted selection for development of common bean lines resistant to angular leaf spot. Plant Breeding 124, 572575.CrossRefGoogle Scholar
Diop, N. N., Kidric, M., Repellin, A., Gareil, M., D'Arcy-Lameta, A., Thi, A. T. P. & Zuily-Fodil, Y. (2004). A multicystanin is induced by drought-stress in cowpea (Vigna unguiculata (L.) Walp.) leaves. FEBS Letters 577, 545550.CrossRefGoogle ScholarPubMed
Dirlewanger, E., Isaac, P. G., Ranade, S., Belajouza, M., Cousin, R. & De Vienne, D. (1994). Restriction fragment length polymorphism analysis of loci associated with disease resistance genes and developmental traits in Pisum sativum L. Theoretical and Applied Genetics 88, 1727.CrossRefGoogle ScholarPubMed
Dita, M. A., Rispail, N., Prats, E., Rubiales, D. & Singh, K. B. (2006). Biotechnology approaches to overcome biotic and abiotic stress constraints in legumes. Euphytica 147, 124.CrossRefGoogle Scholar
Doerge, R. W. (2002). Mapping and analysis of quantitative trait loci in experimental populations. Nature Reviews Genetics 3, 4352.CrossRefGoogle ScholarPubMed
Dondrup, M., Goesmann, A., Bartels, D., Kalinowski, J., Krause, L., Linke, B., Rupp, O., Sczyrba, A., Pühler, A. & Meyer, F. (2003). EMMA: a platform for consistent storage and efficient analysis of microarray data. Journal of Biotechnology 106, 135146.CrossRefGoogle Scholar
Doyle, J. J. & Luckow, M. A. (2003). The rest of the iceberg. Legume diversity and evolution in a phylogenetic context. Plant Physiology 131, 900910.CrossRefGoogle Scholar
Duran, Y., Fratini, R., Garcia, P. & Perez De La Vega, M. (2004). An intersubspecific genetic map of Lens. Theoretical and Applied Genetics 108, 12651273.CrossRefGoogle ScholarPubMed
Dwiyanti, M. S., Ujiie, A., Thuy, L. T. B., Yamada, T. & Kitamura, K. (2007). Genetic analysis of high alpha-tocopherol content in soybean seeds. Breed Science 57, 2328.CrossRefGoogle Scholar
Ellis, T. H. N., Turner, L., Hellens, R. P., Lee, D., Harker, C. L., Enard, C., Domoney, C. & Davies, D. R. (1992). Linkage maps in pea. Genetics 130, 649663.CrossRefGoogle ScholarPubMed
El-Maarouf, H., Zuily-Fodil, Y., Gareil, M., D'Arcy-Lameta, A. & Pham-Thi, A. (1999). Enzymatic activity and gene expression under water stress of phospholipase D in two cultivars of Vigna unguiculata L. Walp. differing in drought tolerance. Plant Molecular Biology 39, 12571265.CrossRefGoogle ScholarPubMed
El-Maarouf, H., D'Arcy-Lameta, A., Gareil, M., Zuily-Fodil, Y., Pham-Thi, A. (2001). Cloning and expression under drought of cDNAs coding for two PI-PLCs in cowpea leaves. Plant Physiology and Biochemistry 39, 167172.CrossRefGoogle Scholar
Ender, M., Terpstra, K. & Kelly, J. D. (2008). Marker-assisted selection for white mold resistance in common bean. Molecular Breeding 21, 149157.CrossRefGoogle Scholar
Endre, G., Kereszt, A., Kevei, Z., Mihacea, S., Kaló, P. & Kiss, G. B. (2002). A receptor kinase gene regulating symbiotic nodule development. Nature 417, 962966.CrossRefGoogle ScholarPubMed
Eujayl, I., Baum, M., Powell, W., Erskine, W. & Pehu, E. (1998 a). A genetic linkage map of lentil (Lens sp.) based on RAPD and AFLP markers using recombinant inbred lines. Theoretical and Applied Genetics 97, 8389.CrossRefGoogle Scholar
Eujayl, I., Erskine, W., Bayaa, B., Baum, M. & Pehu, E. (1998 b). Fusarium vascular wilt in lentil: inheritance and identification of DNA markers for resistance. Plant Breeding 117, 497499.CrossRefGoogle Scholar
Eujayl, I., Erskine, W., Baum, M. & Pehu, E. (1999). Inheritance and linkage analysis of frost injury in lentil. Crop Science 39, 639642.CrossRefGoogle Scholar
Eulgem, T. (2005). Regulation of the Arabidopsis defense transcriptome. Trends in Plant Science 10, 7178.CrossRefGoogle ScholarPubMed
Faleiro, F. G., Ragagnin, V. A., Carvalho, G. A., Paula-Júnior, T. J., Moreira, M. A. & Barros, E. G. (2001). Development of common bean lines resistant to rust and anthracnose by molecular marker-assisted backcrossing. Annual Report of the Bean Improvement Cooperative 44, 109110.Google Scholar
Falgueras, J., Lara, A. J., Fernández-Pozo, N., Cantón, F. R., Pérez-Trabado, G. & Claros, M. G. (2010). SeqTrim: a high-throughput pipeline for pre-processing any type of sequence read. BMC Bioinformatics 11, 38. DOI: 10.1186/1471-2105-11-38.CrossRefGoogle ScholarPubMed
FAO. (2010). Production Statistics. Rome: Food and Agriculture Organization.Google Scholar
Fatokun, C. A., Menancio-Hautea, D. I., Danesh, D. & Young, N. D. (1992). Evidence for orthologous seed weight genes in cowpea and mung bean based on RFLP mapping. Genetics 132, 841846.CrossRefGoogle ScholarPubMed
Fazio, G., Chung, S. M. & Staub, J. E. (2003). Comparative analysis of response to phenotypic and marker-assisted selection for multiple lateral branching in cucumber (Cucumis sativus L.). Theoretical and Applied Genetics 107, 875883.CrossRefGoogle ScholarPubMed
Ferdous, S. A., Watanabe, S., Suzuki-Orihara, C., Tanaka, Y., Kamiya, M., Yamanaka, N. & Harada, K. (2006). QTL analysis of resistance to soybean cyst nematode race 3 in soybean cultivar Toyomusume. Breeding Science 56, 155163.CrossRefGoogle Scholar
Fileppi, M., Galasso, I., Tagliabue, G., Daminati, M. G., Campion, B., Doria, E. & Sparvoli, F. (2010). Characterisation of structural genes involved in phytic acid biosynthesis in common bean (Phaseolus vulgaris L.). Molecular Breeding 25, 453470.CrossRefGoogle Scholar
Firnhaber, C., Puhler, A. & Kuster, H. (2005). EST sequencing and time course microarray hybridizations identify more than 700 Medicago truncatula genes with developmental expression regulation in flowers and pods. Planta 222, 269283.CrossRefGoogle ScholarPubMed
Flandez-Galvez, H., Ford, R., Pang, E. C. K. & Taylor, P. W. J. (2003 a). An intraspecific linkage map of the chickpea (Cicer arietinum L.) genome based on sequence tagged microsatellite site and resistance gene analog markers. Theoretical and Applied Genetics 106, 14471456.CrossRefGoogle ScholarPubMed
Flandez-Galvez, H., Ades, P. K., Ford, R., Pang, E. C. & Taylor, P. W. J. (2003 b). QTL analysis for ascochyta blight resistance in an intraspecific population of chickpea (Cicer arietinum L.). Theoretical and Applied Genetics 107, 12571265.CrossRefGoogle Scholar
Foncéka, D., Hodo-Abalo, T., Rivallan, R., Faye, I., Sall, M. N., Ndoye, O., Fávero, A. P., Bertioli, D. J., Glaszmann, J. C., Courtois, B. & Francois Rami, J. F. (2009). Genetic mapping of wild introgressions into cultivated peanut: a way toward enlarging the genetic basis of a recent allotetraploid. BMC Plant Biology 9, 103. DOI:10.1186/1471-2229-9-103.CrossRefGoogle ScholarPubMed
Ford, R., Le Roux, K., Itman, C., Brouwer, J. B. & Taylor, P. W. J. (2002). Diversity analysis and genotyping in Pisum with sequence tagged microsatellite site (STMS) primers. Euphytica 124, 397405.CrossRefGoogle Scholar
Ford, R., Pang, E. C. K. & Taylor, P. W. J. (1999). Genetics of resistance to ascochyta blight (Ascochyta lentis) of lentil and the identification of closely linked RAPD markers. Theoretical and Applied Genetics 98, 9398.CrossRefGoogle Scholar
Fratini, R., Duran, Y., Garcia, P. & Perez De La Vega, M. (2007). Identification of quantitative trait loci (QTL) for plant structure, growth habit and yield in lentil. Spanish Journal of Agriculture Research 5, 348356.CrossRefGoogle Scholar
Frew, T. J., Russell, A. C. & Timmerman-Vaughan, G. M. (2002). Sequence tagged site markers linked to the smb1 gene for resistance to pea seedborne mosaic virus in pea. Plant Breeding 121, 512516.CrossRefGoogle Scholar
Freyre, R., Skroch, P., Geffroy, V., Adam-Blondon, A.-F., Shirmohamadali, A., Johnson, W., Llaca, V., Nodari, R., Pereira, P., Tsai, S.-M., Tohme, J., Dron, M., Nienhuis, J., Vallejos, C. & Gepts, P. (1998). Towards an integrated linkage map of common bean. 4. Development of a core linkage map and alignment of RFLP maps. Theoretical and Applied Genetics 97, 847856.CrossRefGoogle Scholar
Gallardo, K., Firnhaber, C., Zuber., H., Hericher, D., Belghazi, M., Henry, C., Kuster, H. & Thompson, R. (2007). A combined proteome and transcriptome analysis of developing Medicago truncatula seeds. Molecular and Cellular Proteomics 6, 21652179.CrossRefGoogle ScholarPubMed
Gao, Z., Eyers, S., Thomas, C., Eills, N. & Maule, A. (2004). Identification of markers tightly linked to sbm recessive genes for resistance to pea seed-borne mosaic virus. Theoretical and Applied Genetics 109, 488494.CrossRefGoogle ScholarPubMed
Gepts, P., Beavis, W. D., Brummer, E. C., Shoemaker, R. C., Stalker, T., Weeden, N. F. & Young, N. D. (2005). Legumes as a model plant family. Genomics for food and feed report of the cross-legume advances through genomics conference. Plant Physiology 137, 12281235.CrossRefGoogle Scholar
Gilpin, B. J., Mccallum, J. A., Frew, T. J. & Timmerman-Vaughan, G. M. (1997). A linkage map of the pea (Pisum sativum L.) genome containing cloned sequences of known function and expressed sequence tags (ESTs). Theoretical and Applied Genetics 95, 12891299.CrossRefGoogle Scholar
Gupta, P. K., Kumar, J., Mir, R. R. & Kumar, A. (2010). Marker-assisted selection as a component of conventional plant breeding. Plant Breeding Reviews 33, 145217.Google Scholar
Gupta, S. K., Souframanien, J. & Gopalakrishna, T. (2008). Construction of a genetic linkage map of black gram, Vigna mungo (L.) Hepper, based on molecular markers and comparative studies. Genome 51, 628637.CrossRefGoogle ScholarPubMed
Hamwieh, A., Udupa, S. M., Choumane, W., Sarker, A., Dreyer, F., Jung, C. & Baum, M. (2005). A genetic linkage map of Lens sp. based on microsatellite and AFLP markers and the localization of fusarium vascular wilt resistance. Theoretical and Applied Genetics 110, 669677.CrossRefGoogle ScholarPubMed
Han, O. K., Kaga, A., Isemura, T., Wang, X. W., Tomooka, N. & Vaughan, D. A. (2005). A genetic linkage map for azuki bean (Vigna angularis (Willd.) Ohwi & Ohashi. Theoretical and Applied Genetics 111, 12781287.CrossRefGoogle ScholarPubMed
Hanai, L. R., Santini, L., Camargo, L. E. A., Fungaro, M. H. P., Gepts, P., Tsai, S. M., & Vieira, M. L. C. (2010). Extension of the core map of common bean with EST-SSR, RGA, AFLP, and putative functional markers. Molecular Breeding 25, 2545.CrossRefGoogle ScholarPubMed
Harismendy, O., Poulin, N. C., Strausberg, R. L., Wang, X., Stockwell, T. B., Beeson, K. Y., Schork, N. J., Murray, S. S., Topol, E. J., Levy, S. & Frazer, K. A. (2009). Evaluation of next generation sequencing platforms for population targeted sequencing studies. Genome Biology 10, R32. DOI: 10.1186/gb-2009-10-3-r32.CrossRefGoogle ScholarPubMed
Hayes, A. J., Ma, G., Buss, G. R. & Saghai-Maroof, M. A. (2000). Molecular mapping of rsv4, a gene conferring resistance to al known strains of soybean mosaic virus. Crop Science 40, 14341437.CrossRefGoogle Scholar
Hecht, V., Foucher, F., Ferrándiz, C., Macknight, R., Navarro, C., Morin, J., Vardy, M. E., Ellis, N., Beltrán, J. P., Rameau, C. & Weller, J. L. (2005). Conservation of Arabidopsis flowering genes in model legumes. Plant Physiology 137, 14201434.CrossRefGoogle ScholarPubMed
Heffner, E. L., Sorrells, M. E. & Jannink, J. L. (2009). Genomic selection for crop improvement. Crop Science 49, 112.CrossRefGoogle Scholar
Henckel, K., Runte, K. J., Bekel, T., Dondrup, M., Jakobi, T., Küster, H. & Goesmann, A. (2009). TRUNCATULIX – a data warehouse for the legume community. BMC Plant Biology 9, 19. DOI: 10.1186/1471-2229-9-19.CrossRefGoogle ScholarPubMed
Hirschhorn, J. N. & Daly, M. J. (2005). Genome-wide association studies for common diseases and complex traits. Nature Reviews Genetics 6, 95108.CrossRefGoogle ScholarPubMed
Holland, J. B. (2007). Genetic architecture of complex traits in plants. Current Opinion in Plant Biology 10, 156161.CrossRefGoogle ScholarPubMed
Horst, I., Welham, T., Kelly, S., Kaneko, T., Sato, S., Tabata, S., Parniske, M. & Wang, T. L. (2007). TILLING Mutants of Lotus japonicus reveal that nitrogen assimilation and fixation can occur in the absence of nodule-enhanced sucrose synthase[C][W]. Plant Physiology 144, 806820.CrossRefGoogle Scholar
Hossain, S., Ford, R., Mcneil, D., Pittock, C. & Panozzo, J. F. (2010). Development of a selection tool for seed shape and QTL analysis of seed shape with other morphological traits for selective breeding in chickpea (Cicer arietinum L.). Australian Journal of Crop Science 4, 278288.Google Scholar
Hougaard, B. K., Madsen, L. H., Sandal, N., Moretzsohn, M. C., Fredslund, J., Schauser, L., Nielsen, A. M., Rohde, T., Sato, S., Tabata, S., Bertioli, D. J. & Stougaard, J. (2008). Legume anchor markers link syntenic regions between Phaseolus vulgaris, Lotus japonicus, Medicago truncatula and Arachis. Genetics 179, 22992312.CrossRefGoogle ScholarPubMed
Huh, M. K. & Huh, H. W. (2001). Genetic diversity and population structure of wild lentil tare. Crop Science 41, 19401946.CrossRefGoogle Scholar
Humphry, M. E., Konduri, V., Lambrides, C. J., Magner, T., Mcintyre, C. L., Aitken, E. A. B. & Liu, C. J. (2002). Development of a mungbean (Vigna radiata) RFLP linkage map and its comparison with lablab (Lablab purpureus) reveals a high level of colinearity between the two genomes. Theoretical and Applied Genetics 105, 160166.CrossRefGoogle ScholarPubMed
Humphry, M. E., Magner, T., Mcintyre, C. L., Aitken, E. A. B. & Liu, C. J. (2003). Identification of a major locus conferring resistance to powdery mildew (Erysiphe polygoni DC) in Mungbean (Vigna radiata (L.) Wilczek) by QTL analysis. Genome 46, 738744.CrossRefGoogle Scholar
Hwang, T. Y., Moon, J. K., Yu, S., Yang, K., Mohankumar, S., Yu, Y. H., Lee, Y. H., Kim, H. S., Kim, H. M., Saghai-Maroof, M. A. & Jeong, S. C. (2006). Application of comparative genomics in developing molecular markers tightly linked to the virus resistance gene Rsv4 in soybean. Genome 49, 380388.CrossRefGoogle Scholar
Hwang, T. Y., Sayama, T., Takahashi, M., Takada, Y., Nakamoto, Y., Funatsuki, H., Hisano, H., Sasamoto, S., Sato, S., Tabata, S., Kono, I., Hoshi, M., Hanawa, M., Yano, C., Xia, Z., Harada, K., Kitamura, K. & Ishimoto, M. (2009). High-density integrated linkage map based on SSR markers in soybean. DNA Research 16, 213225.CrossRefGoogle ScholarPubMed
Hyten, D. L., Hartman, G. L., Nelson, R. L., Frederick, R. D., Concibido, V. C., Narvel, J. M. & Cregan, P. B. (2007). Map location of the Rpp1 locus that confers resistance to soybean rust in soybean. Crop Science 47, 837840.CrossRefGoogle Scholar
Imrie, B. C. & Shanmugasundaram, S. (1987). Source of variation in yield in international mungbean trials. Field Crops Research 16, 197208.CrossRefGoogle Scholar
Iruela, M., Castro, P., Rubio, J., Cubero, J. I., Jacinto, C., Millan, T. & Gil, J. (2007). Validation of a QTL for resistance to ascochyta blight linked to resistance to fusarium wilt race 5 in chickpea (Cicer arietinum L.). European Journal of Plant Pathology 119, 2937.CrossRefGoogle Scholar
Isemura, T., Kaga, A., Tomooka, N., Shimizu, T. & Vaughan, D. A. (2010). The genetics of domestication of rice bean, Vigna umbellata. Annals of Botany 106, 927944.CrossRefGoogle ScholarPubMed
Isobe, S., Klimenko, I., Ivashuta, S., Gau, M. & Kozlov, N. N. (2003). First RFLP linkage map of red clover (Trifolium pratense L.) based on cDNA probes and its transferability to other red clover germplasm. Theoretical and Applied Genetics 108, 105112.CrossRefGoogle ScholarPubMed
Iuchi, S., Yamaguchi-Shinozaki, K., Urao, T. & Shinozaki, K. (1996 a). Characterization of two cDNAs for novel drought-inducible genes in the highly drought tolerant cowpea. Journal of Plant Research 109, 415424.CrossRefGoogle Scholar
Iuchi, S., Yamaguchi-Shinozaki, K., Urao, T., Terao, T. & Shinozaki, K. (1996 b). Novel drought-inducible genes in the highly drought-tolerant cowpea: cloning of cDNAs and analysis of the expression of the corresponding genes. Plant and Cell Physiology 37, 10731082.CrossRefGoogle ScholarPubMed
Iuchi, S., Kobayashi, M., Yamaguchi-Shinozaki, K. & Shinozaki, K. (2000). A stress-inducible gene for 9-cis-epoxycarotenoid dioxygenase involved in abscisic acid biosynthesis under water stress in drought-tolerant cowpea. Plant Physiology 123, 553562.CrossRefGoogle ScholarPubMed
Ivashuta, S., Liu, J., Liu, J., Lohar, D. P., Haridas, S., Bucciarelli, B., Vandenbosch, K. A., Vance, C. P., Harrison, M. J. & Gantt, J. S. (2005). RNA interference identifies a calcium-dependent protein kinase involved in Medicago truncatula root development. Plant Cell 17, 29112921.CrossRefGoogle ScholarPubMed
Jackson, S. A., Rokhsar, D., Stacey, G., Shoemaker, R. C., Schmutz, J. & Grimwood, J. (2006). Toward a reference sequence of the soybean genome: a multiagency effort. Crop Science 46(Supp. 1), S55S61.CrossRefGoogle Scholar
Janila, P. & Sharma, B. (2004). RAPD and SCAR markers for powdery mildew resistance gene er in pea. Plant Breeding 123, 271274.CrossRefGoogle Scholar
Jannink, J. L., Lorenz, A. J. & Iwata, H. (2010). Genomic selection in plant breeding: from theory to practice. Briefings in Functional Genomics 9, 166177.CrossRefGoogle ScholarPubMed
Jayashree, B., Buhariwalla, H. K., Shinde, S. & Crouch, J. H. (2005). A legume genomics resource: the chickpea root expressed sequence tag database. Electronic Journal of Biotechnology 8, 128133.Google Scholar
Jeong, S. C. & Saghai-Maroof, M. A. (2004). Detection and genotyping of SNPs tightly linked to two disease resistance loci Rsv1 and Rsv3, of soybean. Plant Breeding 123, 305310.CrossRefGoogle Scholar
Jeong, S. C., Kristipati, S., Hayes, A. J., Maughan, P. J., Noffsinger, S. L., Gundaz, I., Buss, G. R. & Saghai-Maroof, M. A. (2002). Genetic and sequence analysis of markers tightly linked to the soybean mosaic virus resistance gene, Rsv3. Crop Science 42, 265270.Google Scholar
Johnson, W. C., Guzman, P., Mandala, D., Mkandawire, A. B. C., Temple, S., Gilbertson, R. L. & Gepts, P. (1997). Molecular tagging of the bc-3 gene for introgression into Andean common bean. Crop Science 37, 248254.CrossRefGoogle Scholar
Johnson, W. C., Menendez, C., Nodari, R., Koinange, E. M. K., Magnusson, S., Singh, S. P. & Gepts, P. (1996). Association of a seed weight factor with the phaseolin seed storage protein locus across genotypes, environments and genomes in Phaseolus-Vigna spp.: Sax (1923) revisited. Journal of Agricultural Genomics 2. Available online at http://wheat.pw.usda.gov/jag/ (verified 26 May 2011).Google Scholar
Jones, K. M., Sharopova, N., Lohar, D. P., Zhang, J. Q., Vandenbosch, K. A. & Walker, G. C. (2008). Differential response of the plant Medicago truncatula to its symbiont Sinorhizobium meliloti or an exopolysaccharide-deficient mutant. Proceedings of the National Academy of Sciences of the United States of America 105, 704709.CrossRefGoogle ScholarPubMed
Jung, G., Skroch, P. W., Coyne, D. P., Nienhuis, J., Arnaud-Santana, E., Ariyarathne, H. M., Kaeppler, S. M. & Bassett, M. J. (1997). Molecular-marker-based genetic analysis of tepary bean-derived common bacterial blight resistance in different developmental stages of common bean. Journal of the American Society for Horticultural Science 122, 329337.CrossRefGoogle Scholar
Kaczorowski, K. A., Kim, K. S., Diers, B. W. & Hudson, M. E. (2008). Microarray-based genetic mapping using soybean near-isogenic lines and generation of SNP markers in the Rag1 aphid-resistance interval. Plant Genome 1, 8998.CrossRefGoogle Scholar
Kaga, A. & Ishimoto, M. (1998). Genetic localization of a bruchid resistance gene and its relationship to insecticidal cyclopeptide alkaloids the vignatic acids, in mungbean (Vigna radiata L. Wilczek). Molecular Genetics and Genomics 258, 378384.CrossRefGoogle ScholarPubMed
Kaga, A., Ohnishi, M., Ishii, T. & Kamijima, O. (1996). A genetic linkage map of azuki bean constructed with molecular and morphological markers using an interspecific population (Vigna angularis×V. nakashimae). Theoretical and Applied Genetics 93, 658663.CrossRefGoogle ScholarPubMed
Kassem, M. A., Meksem, K., Kang, C. H., Njiti, V. N., Kilo, V., Wood, A. J. & Lightfoot, D. A. (2004). Loci underlying resistance to manganese toxicity mapped in a soybean recombinant inbred line population of ‘Essex'בForrest’. Plant and Soil 260, 197204.CrossRefGoogle Scholar
Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K. & Shinozaki, K. (1999). Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnology 17, 287291.CrossRefGoogle ScholarPubMed
Kelly, J. D., Gepts, P., Miklas, P. N. & Coyne, D. P. (2003). Tagging and mapping of genes and QTL and molecular-marker assisted selection for traits of economic importance in bean and cowpea. Field Crops Research 82, 135154.CrossRefGoogle Scholar
Koinange, E. M. K., Singh, S. P. & Gepts, P. (1996). Genetic control of the domestication syndrome in common bean. Crop Science 36, 10371045.CrossRefGoogle Scholar
Kolkman, J. M. & Kelly, J. D. (2003). QTL conferring resistance and avoidance to white mold in common bean. Crop Science 43, 539548.CrossRefGoogle Scholar
Komori, T. & Nitta, N. (2005). Utilization of the CAPS/dCAPS method to convert rice SNPs into PCR-based markers. Breeding Science 55, 9398.CrossRefGoogle Scholar
Koutroubas, S. D., Papageorgiou, M. & Fotiadis, S. (2009). Growth and nitrogen dynamics of spring chickpea genotypes in a Mediterranean-type climate. Journal of Agricultural Science, Cambridge 147, 445458.CrossRefGoogle Scholar
Küster, H., Hohnjec, N., Krajinski, F., Yahyaoui, F. E., Manthey, K., Gouzy, J., Dondrup, M., Meyer, F., Kalinowski, J., Brechenmacher, L., Van Tuinen, D., Gianinazzi-Pearson, V., Pühler, A., Gamas, P. & Becker, A. (2004). Construction and validation of cDNA-based Mt6k-RIT macroarray and microarray to explore root endosymbioses in the model legume Medicago truncatula. Journal of Biotechnology 108, 95113.CrossRefGoogle Scholar
Kulwal, P. L., Singh, R., Balyan, H. S. & Gupta, P. K. (2004). Genetic basis of pre-harvest sprouting tolerance using single-locus and two-locus QTL analyses in bread wheat. Functional and Integrated Genomics 4, 94101.CrossRefGoogle ScholarPubMed
Kumar, J., Singh, K. B., Malhotra, R. S., Miranda, J. H. & Gupta, T. D. (1996). Genotype×environment interaction for seed yield in chickpea. Indian Journal of Genetics 56, 6978.Google Scholar
Kumar, S. & Ali, M. (2006). GE interaction and its breeding implications in pulses. Botanica 56, 3136.Google Scholar
Kwak, M. & Gepts, P. (2009). Structure of genetic diversity in the two major gene pools of common bean (Phaseolus vulgaris L., Fabaceae). Theoretical and Applied Genetics 118, 979992.CrossRefGoogle ScholarPubMed
Lambrides, C. J., Lawn, R. J., Godwin, I. D., Manners, J. & Imrie, B. C. (2000). Two genetic linkage maps of mungbean using RFLP and RAPD markers. Australian Journal of Agricultural Research 51, 415425.CrossRefGoogle Scholar
Laucou, V., Haurogne, K., Ellis, N. & Rameau, C. (1998). Genetic mapping in pea. 1. RAPD-based genetic linkage map of Pisum sativum. Theoretical and Applied Genetics 97, 905915.CrossRefGoogle Scholar
Lee, G. J., Boerma, H. R., Villagarcia, M. R., Zhou, X., Carter, T. E., Li, Z. & Gibbs, M. O. (2004). A major QTL conditioning salt tolerance in S-100 soybean and descendent cultivars. Theoretical and Applied Genetics 109, 16101619.CrossRefGoogle Scholar
Lee, J. M., Grant, D., Vallejos, C. E. & Shoemaker, R. C. (2001). Genome organization in dicots. II. Arabidopsis as a ‘bridging species’ to resolve genome evolution events among legumes. Theoretical and Applied Genetics 103, 765773.CrossRefGoogle Scholar
Lewers, K., Heinz, R., Beard, H., Marek, L. & Matthews, B. (2002). A physical map of a gene- dense region in soybean linkage group A2 near the black seed coat and Rhg4 loci. Theoretical and Applied Genetics 104, 254260.CrossRefGoogle Scholar
Li, D., Su, Z., Dong, J. & Wang, T. (2009). An expression database for roots of the model legume Medicago truncatula under salt stress. BMC Genomics 10, 517. DOI: 10.1186/1471-2164-10-517.CrossRefGoogle ScholarPubMed
Li, X., Han, Y., Teng, W., Zhang, S., Yu, K., Poysa, V., Anderson, T., Ding, J. & Li, W. (2010). Pyramided QTL underlying tolerance to Phytophthora root rot in mega-environments from soybean cultivars ‘Conrad’ and ‘Hefeng 25’. Theoretical and Applied Genetics 121, 651658.CrossRefGoogle ScholarPubMed
Li, Y., Hill, C. B., Carlson, S. R., Diers, B. W., Hartman, G. L. (2007). Soybean aphid resistance genes in the soybean cultivars Dowling and Jackson map to linkage group M. Molecular Breeding 19, 2534.CrossRefGoogle Scholar
Li, Y. D., Wang, Y. J., Tong, Y. P., Gao, J. G., Zhang, J. S. & Chen, S. Y. (2005). QTL mapping of phosphorus deficiency tolerance in soybean (Glycine max L. Merr.). Euphytica 142, 137142.CrossRefGoogle Scholar
Libault, M., Joshi, T., Benedito, V. A., Xu, D., Udvardi, M. K. & Stacey, G. (2009). Legume transcription factor genes: What makes legumes so special? Plant Physiology 151, 9911001.CrossRefGoogle ScholarPubMed
Lim, H. S., Ko, T. S., Lambert, K. N., Kim, H. G., Korban, S. S., Hartman, G. L. & Domier, L. L. (2005). Soybean mosaic virus helper component-protease enhances somatic embryo production and stabilizes transgene expression in soybean. Plant Physiology and Biochemistry 43, 10141021.CrossRefGoogle ScholarPubMed
Liu, J., Blaylock, L. A., Endre, G., Cho, J., Town, C. D., Vandenbosch, K. A. & Harrison, M. J. (2003). Transcript profiling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of an arbuscular mycorrhizal symbiosis. Plant Cell 15, 21062123.CrossRefGoogle ScholarPubMed
Liu, N., Shan, Y., Wang, F. P., Xu, G., Peng, K. M., Li, X. H. & Zhang, Q. (2001). Identification of an 85-kb DNA fragment containing pms 1, a locus for photoperiod-sensitive genic male-sterility in rice. Molecular Genetics and Genomics 266, 271275.CrossRefGoogle Scholar
Liu, S., Yu, K. & Park, S. J. (2008). Development of STS markers and QTL validation for common bacterial blight resistance in common bean. Plant Breeding 127, 6268.CrossRefGoogle Scholar
Lohar, D. P., Sharopova, N., Endre, G., Penuela, S., Samac, D., Town, C., Silverstein, K. A. T. & Vandenbosch, K. A. (2006). Transcript analysis of early nodulation events in Medicago truncatula. Plant Physiology 140, 221234.CrossRefGoogle ScholarPubMed
Malhotra, R. S. & Singh, K. B. (1991). Classification of chickpea growing environments to control genotype by environment interaction. Euphytica 58, 512.CrossRefGoogle Scholar
Mantri, N. L., Ford, R., Coram, T. E. & Pang, E. C. K. (2007). Transcriptional profiling of chickpea genes differentially regulated in response to high-salinity, cold and drought. BMC Genomics 8, 303. DOI: 10.1186/1471-2164-8-303.CrossRefGoogle ScholarPubMed
Mantri, N. L., Ford, R., Coram, T. E. & Pang, E. C. K. (2010). Evidence of unique and shared responses to major biotic and abiotic stresses in chickpea. Environmental and Experimental Botany 69, 286292.CrossRefGoogle Scholar
Matos, A. R., D'Arcy-Lameta, A., França, M., Pêtres, S., Edelman, L., Kader, J.-C., Zuily-Fodil, Y. & Pham-Thi, A. T. (2001). A novel patatin-like gene stimulated by drought stress encodes a galactolipid acyl hydrolase. FEBS Letters 491, 188192.CrossRefGoogle ScholarPubMed
Maughan, P. J., Saghai-Maroof, M. A. & Buss, G. R. (1996). Molecular-marker analysis of seed-weight: genomic locations, gene action and evidence for orthologous evolution among three legume species. Theoretical and Applied Genetics 93, 574579.CrossRefGoogle ScholarPubMed
Mcmullen, M. D., Kresovich, S., Villeda, H. S., Bradbury, P., Li, H., Sun, Q., Flint-Garcia, S., Thornsberry, J., Acharya, C., Bottoms, C., Brown, P., Browne, C., Eller, M., Guill, K., Harjes, C., Kroon, D., Lepak, N., Mitchell, S. E., Peterson, B., Pressoir, G., Romero, S., Rosas, M. O., Salvo, S., Yates, H., Hanson, M., Jones, E., Smith, S., Glaubitz, J. C., Goodman, M., Ware, D., Holland, J. B. & Buckler, E. S. (2009). Genetic properties of the maize nested association mapping population. Science 325, 737740.CrossRefGoogle ScholarPubMed
Melotto, M., Afanador, L. & Kelly, J. D. (1996). Development of a SCAR marker linked to the I gene in common bean. Genome 39, 12161219.CrossRefGoogle Scholar
Melotto, M. & Kelly, J. D. (2001). Fine mapping of the Co-4 locus of common bean reveals a resistance gene candidate, COK-4, that encodes for a protein kinase. Theoretical and Applied Genetics 103, 508517.CrossRefGoogle Scholar
Menancio-Hautea, D., Fatokun, C. A., Kumar, L., Danesh, D. & Young, N. D. (1993). Comparative genome analysis of mungbean (Vigna radiata (L.) Wilczek) and cowpea (V. unguiculata (L.) Walp.) using RFLP mapping data. Theoretical and Applied Genetics 86, 797810.CrossRefGoogle Scholar
Menéndez, C. M., Hall, A. E. & Gepts, P. (1997). A genetic linkage map of cowpea (Vigna unguiculata) developed from a cross between two inbred domesticated lines. Theoretical and Applied Genetics 95, 12101217.CrossRefGoogle Scholar
Meyers, B. C., Galbraith, D. W., Nelson, T. & Agrawal, V. (2004). Methods for transcriptional profiling in plants: be fruitful and replicate. Plant Physiology 135, 637652.CrossRefGoogle ScholarPubMed
Mian, M. A. R., Wang, T. Y., Phillips, D. V., Alvernaz, J. & Boerman, H. R. (1999). Molecular mapping of the Rcs3 gene for resistance to frogeye leaf spot in soybean. Crop Science 39, 16871691.CrossRefGoogle Scholar
Michlmore, R. (1995). Molecular approaches to manipulation of disease resistance genes. Annual Review of Phytopathology 33, 393427.CrossRefGoogle Scholar
Miklas, P. N. (2002). Marker-assisted selection for disease resistance in common beans. Annual Report of the Bean Improvement Cooperative 45, 13.Google Scholar
Miklas, P. N., Johnson, W. C., Delorme, R. & Gepts, P. (2001). QTL conditioning physiological resistance and avoidance to white mold in dry bean. Crop Science 41, 309315.CrossRefGoogle Scholar
Miklas, P. N., Kelly, J. D. & Singh, S. P. (2003 a). Registration of anthracnose-resistant pinto bean germplasm line USPT-ANT-1. Crop Science 43, 18891890.CrossRefGoogle Scholar
Miklas, P. N., Coyne, D. P., Grafton, K. F., Mutlu, N., Reiser, J., Lindgren, D. T. & Singh, S. P. (2003 b). A major QTL for common bacterial blight resistance derives from the common bean northern landrace cultivar Montana No. Euphytica 131, 137146.CrossRefGoogle Scholar
Miklas, P. N., Smith, J. R. & Singh, S. P. (2006 a). Registration of common bacterial blight resistant dark red kidney bean germplasm line USDk-CBB-15. Crop Science 46, 10051006.CrossRefGoogle Scholar
Miklas, P. N., Kelly, J. D., Beebe, S. E. & Blair, M. W. (2006 b). Common bean breeding for resistance against biotic and abiotic stresses: from classical to MAS breeding. Euphytica 147, 106131.CrossRefGoogle Scholar
Millan, T., Rubio, J., Iruela, M., Daly, K., Cubero, J. I. & Gil, J. (2003). Markers associated with Ascochyta blight resistance in chickpea and their potential in marker assisted selection. Field Crops Research 84, 373384.CrossRefGoogle Scholar
Molina, C., Rotter, B., Horres, R., Udupa, S. M., Besser, B., Bellarmino, L., Baum, M., Matsumura, H., Terauchi, R., Kahl, G. & Winter, P. (2008). SuperSAGE: the drought stress-responsive transcriptome of chickpea roots. BMC Genomics 9, 553. DOI: 10.1186/1471-2164-9-553.CrossRefGoogle ScholarPubMed
Moretzsohn, M., Bertioli, S. L., Guimarães, P., Madsen, L., Fredslund, J., Hougaard, B., Schauser, L., Sandal, N., Stougaard, J., Tabata, S. & Bertioli, D. (2007). Can legume synteny be useful in guiding the introgression of wild genes into cultivated peanut? Lotus Newsletter 37, 9596.Google Scholar
Mudge, J., Cregan, P. B., Kenworthy, J. P., Kenworthy, W. J., Orf, J. H. & Young, N. D. (1997). Two microsatellite markers that flank the major soybean cyst nematode resistance locus. Crop Science 37, 16111615.CrossRefGoogle Scholar
Muehlbauer, F. J., Cho, S., Sarker, A., Mcphee, K. E., Coyne, C. J., Rajesh, P. N. & Ford, R. (2006). Application of biotechnology in breeding lentil for resistance to biotic and abiotic stress. Euphytica 147, 149165.CrossRefGoogle Scholar
Murray, J. D., Michales, T. E., Cardona, C., Schaafsma, A. W. & Pauls, K. P. (2004). Quantitative trait loci for leafhopper (Empoasca fabae and Empoasca kraemeri) resistance and seed weight in the common bean. Plant Breeding 123, 474479.CrossRefGoogle Scholar
Mustafa, B. M., Coram, T. E., Pang, E. C. K., Taylor, P. W. J. & Ford, R. (2009). A cDNA microarray approach to decipher lentil (Lens culinaris) responses to Ascochyta lentis. Australasian Plant Pathology 38, 617631.CrossRefGoogle Scholar
Mutlu, N., Miklas, P. N., Steadman, J. R., Vidaver, A. K., Lindgren, D. T., Reiser, J., Coyne, D. P. & Pastor-Corrales, M. A. (2005). Registration of common bacterial blight resistant pinto bean germplasm line ABCP-8. Crop Science 45, 806807.CrossRefGoogle Scholar
Mutlu, N., Miklas, P. N. & Coyne, D. P. (2006). Resistance gene analog polymorphism (RGAP) markers co-localize with disease resistance genes and QTL in common bean. Molecular Breeding 17, 127135.CrossRefGoogle Scholar
Mutlu, N., Urrea, C. A., Miklas, P. N., Steadman, J. R., Pastor Corrales, M. A., Lindgren, D. T., Reiser, J., Vidaver, A. K. & Coyne, D. P. (2008). Registration of common bacterial blight, rust and bean common mosaic resistant great northern bean germplasm line ABC-Weighing. Journal of Plant Registrations 2, 5355.CrossRefGoogle Scholar
Myers, G. O., Fatokum, C. A. & Young, D. A. (1996). RFLP mapping of an aphid resistance gene in cowpea (Vigna unguiculata L. Walp). Euphytica 91, 181187.CrossRefGoogle Scholar
Narasimhamoorthy, B., Bouton, J. H., Olsen, K. M. & Sledge, M. K. (2007). Quantitative trait loci and candidate gene mapping of aluminum tolerance in diploid alfalfa. Theoretical and Applied Genetics 114, 901913.CrossRefGoogle ScholarPubMed
Navarro, F. M., Sass, M. E. & Nienhuis, J. (2009). Marker-facilitated selection for a major QTL associated with root rot resistance in snap bean (Phaseolus vulgaris L.). Crop Science 49, 850856.CrossRefGoogle Scholar
Nayak, S. N., Zhu, H., Varghese, N., Datta, S., Choi, H. K., Horres, R., Jüngling, R., Singh, J., Kavi Kishor, P. B., Sivaramakrishnan, S., Hoisington, D. A., Kahl, G., Winter, P., Cook, D. R. & Varshney, R. K. (2010). Integration of novel SSR and gene-based SNP marker loci in the chickpea genetic map and establishment of new anchor points with Medicago truncatula genome. Theoretical and Applied Genetics 120, 14151441.CrossRefGoogle ScholarPubMed
Njiti, V. N. & Lightfoot, D. A. (2006). Genetic analysis infers Dt loci underlie resistance to Fusarium solani f. sp. glycines in indeterminate soybeans. Canadian Journal of Plant Science 86, 8390.CrossRefGoogle Scholar
Nordborg, M. & Tavare, S. (2002). Linkage disequilibrium: what history has to tell us. Trends in Genetics 18, 8390.CrossRefGoogle ScholarPubMed
Nunberg, A., Bedell, J. A., Budiman, M. A., Citek, R. W., Clifton, S. W., Fulton, L., Pape, D., Cai, Z., Joshi, T., Nguyen, H., Xu, D. & Stacey, G. (2006). Survey sequencing of soybean elucidates the genome structure, composition and identifies novel repeats. Functional Plant Biology 33, 765773.CrossRefGoogle ScholarPubMed
Nunes, A. C., Vianna, G. R., Cuneo, F., Amaya-Farfan, J., De Cap Deville, G., Rech, E. L. & Aragao, F. J. (2006). RNAi-mediated silencing of the myo-inositol-1-phosphate synthase gene (GmMIPS1) in transgenic soybean inhibited seed development and reduced phytate content. Planta 224, 125132.CrossRefGoogle ScholarPubMed
O'Rourke, J. A., Charlson, D. V., Gonzalez, D. O., Vodkin, L. O., Graham, M. A., Cianzio, S. R., Grusak, M. A. & Shoemaker, R. C. (2007). Microarray analysis of iron deficiency chlorosis in near-isogenic soybean lines. BMC Genomics 8, 476. DOI: 10.1186/1471-2164-8-476.CrossRefGoogle ScholarPubMed
Ouedraogo, J. T., Gowda, B. S., Jean, M., Close, T. J., Ehlers, J. D., Hall, A. E., Gillaspie, A. G., Roberts, P. A., Ismail, A. M., Bruening, G., Gepts, P., Timko, M. P. & Belzile, F. J. (2002). An improved genetic linkage map for cowpea (Vigna unguiculata L.) combining AFLP, RFLP, RAPD, biochemical markers, and biological resistance traits. Genome 45, 175188.CrossRefGoogle ScholarPubMed
Palomino, C., Satovic, Z., Cubero, J. I. & Torres, A. M. (2006). Identification and characterization of NBS-LRR class resistance gene analogs in faba bean (Vicia faba L.) and chickpea (Cicer arietinum L.). Genome 49, 12271237.CrossRefGoogle ScholarPubMed
Palomino, C., Fernández-Romero, M. D., Rubio, J., Torres, A., Moreno, M. T. & Millán, T. (2009). Integration of new CAPS and dCAPS-RGA markers into a composite chickpea genetic map and their association with disease resistance. Theoretical and Applied Genetics 118, 671682.CrossRefGoogle ScholarPubMed
Panthee, D. R., Kwanyuen, P., Sams, C. E., West, D. R., Saxton, A. M. & Pantalone, V. R. (2004). Quantitative trait loci for beta-conglycinin (7S) and glycinin (11S) fractions of soybean storage protein. Journal of the American Oil Chemists’ Society 81, 10051012.CrossRefGoogle Scholar
Park, S. O., Coyne, D. P., Jung, G., Skroch, P. W., Arnaud-Santana, E., Steadman, J. R., Ariyarathne, H. M. & Nienhuis, J. (2000). Mapping of QTL for seed size and shape traits in common bean. Journal of the American Society for Horticultural Science 125, 466475.CrossRefGoogle Scholar
Pedraza, F., Gallego, G., Beebe, S. & Tohme, J. (1997). Marcadores scar y rapd para la resistencia a la bacteriosis comun (CBB). In Taller de Mejoramiento de Frijol para el Siglo XXI: Bases para una Estrategia para America Latina (Eds Singh, S. P. & Voysest, O.), pp. 130134. Cali, Colombia: CIAT.Google Scholar
Peng, H., Yu, X., Cheng, H., Shi, Q., Zhang, H., Li, J. & Ma, H. (2010). Cloning and characterization of a novel NAC family gene CarNAC1 from chickpea (Cicer arietinum L.). Molecular Biotechnology 44, 3040.CrossRefGoogle ScholarPubMed
Perry, J. A., Wang, T. L., Welham, T. J., Gardner, S., Pike, J. M., Yoshida, S. & Parniske, M. (2003). A TILLING reverse genetics tool and a web-accessible collection of mutants of the legume Lotus japonicus. Plant Physiology 131, 866871.CrossRefGoogle Scholar
Perry, J., Brachmann, A., Welham, T., Binder, A., Charpentier, M., Groth, M., Haage, K., Markmann, K., Wang, T. L. & Parniske, M. (2009). TILLING in Lotus japonicus identified large allelic series for symbiosis genes and revealed a bias in functionally defective ethyl methanesulfonate alleles toward glycine replacements. Plant Physiology 151, 12811291.CrossRefGoogle ScholarPubMed
Phakamas, N., Patanothai, A., Pannangpetch, K., Jogloy, S. & Hoogenboom, G. (2008). Seasonal responses and genotype-by-season interactions for the growth dynamic and development traits of peanut. Journal of Agricultural Science, Cambridge 146, 311323.CrossRefGoogle Scholar
Phan, H. T. T., Ellwood, S. R., Hane, J. K., Ford, R., Materne, M. & Oliver, R. P. (2007). Extensive macrosynteny between Medicago truncatula and Lens culinaris ssp. culinaris. Theoretical and Applied Genetics 114, 549558.CrossRefGoogle ScholarPubMed
Polegri, L. & Negri, V. (2010). Molecular markers for promoting agro-biodiversity conservation: a case study from Italy. How cowpea landraces were saved from extinction. Genetic Resources and Crop Evolution 57, 867880.CrossRefGoogle Scholar
Poncet, V., Lamy, F., Devos, K. M., Gale, M. D., Sarr, A. & Robert, T. (2000). Genetic control of domestication traits in pearl millet (Pennisetum glaucum L., Poaceae). Theoretical and Applied Genetics 100, 147159.CrossRefGoogle Scholar
Porch, T. G., Blair, M. W., Lariguet, P., Galeano, C., Pankhurst, C. E., Broughton, W. J. (2009). Generation of a mutant population for TILLING common bean genotype BAT 93. Journal of the American Society for Horticultural Science 134, 348355.CrossRefGoogle Scholar
Price, A. H. (2006). Believe it or not, QTLs are accurate! Trends in Plant Science 11, 213216.CrossRefGoogle ScholarPubMed
Primono, V. S., Poysa, V., Ablett, G. R., Jackson, C. J., Gijzen, M. & Rajcan, I. (2005). Mapping QTL for individual and total isoflavone content in soybean seeds. Crop Science 45, 24542464.CrossRefGoogle Scholar
Quint, M., Mihaljevic, R., Dussle, C. M., Xu, M. L., Melchinger, A. E. & Lübberstedt, T. (2002). Development of RGA-CAPS markers and genetic mapping of candidate genes for sugarcane mosaic virus resistance in maize. Theoretical and Applied Genetics 105, 355363.CrossRefGoogle ScholarPubMed
Radhika, P., Gowda, S. J. M., Kadoo, N. Y., Mhase, L. B., Jamadagni, B. M., Sainani, M. N., Chandra, S. & Gupta, V. S. (2007). Development of an integrated intraspecific map of chickpea (Cicer arietinum L.) using two recombinant inbred line populations. Theoretical and Applied Genetics 115, 209216.CrossRefGoogle ScholarPubMed
Rafalski, J. A. (2010). Association genetics in crop improvement. Current Opinion in Plant Biology 13, 174–80.CrossRefGoogle ScholarPubMed
Rajesh, P. N., Coyne, C., Meksem, K., Dersharma, K., Gupta, V. & Muehlbauer, F. J. (2004). Construction of a HindIII bacterial artificial chromosome library and its use in identification of clones associated with disease resistance in chickpea. Theoretical and Applied Genetics 108, 663669.CrossRefGoogle ScholarPubMed
Rakshit, S., Winter, P., Tekeoglu, M., Munoz, J. J., Pfaff, T., Benko-Iseppon, A-M., Muehlbauer, F. J. & Kahl, G. (2003). DAF marker tightly linked to a major locus for Ascochyta blight resistance in chickpea (Cicer arietinum L.). Euphytica 132, 2330.CrossRefGoogle Scholar
Ramos, M. L., Huntley, J. J., Maleki, S. J. & Ozias-Akins, P. (2009). Identification and characterization of a hypoallergenic ortholog of Ara h 2·01. Plant and Molecular Biology 69, 325335.CrossRefGoogle ScholarPubMed
Reyna, N. & Sneller, C. H. (2001). Evaluation of marker-assisted introgression of yield QTL alleles into adapted soybean. Crop Science 41, 13171321.CrossRefGoogle Scholar
Risch, N. & Merikangas, K. (1996). The future of genetic studies of complex human diseases. Science 273, 15161517.CrossRefGoogle ScholarPubMed
Roman, B., Torres, A. M., Rubiales, D., Cubero, J. I. & Satovic, Z. (2002). Mapping of quantitative trait loci controlling broomrape (Orobanche crenata Forsk.) resistance in faba bean (Vicia faba L.). Genome 45, 10571063.CrossRefGoogle ScholarPubMed
Roman, B., Satovic, Z., Avila, C. M., Rubiales, D., Moreno, M. T. & Torres, A. M. (2003). Locating genes associated with Ascochyta fabae resistance in Vicia faba L. Australian Journal of Agriculture Research 54, 8590.CrossRefGoogle Scholar
Rubeena, , Ford, R. & Taylor, P. W. J. (2003). Construction of an intraspecific linkage map of lentil (Lens culinaris ssp. culinaris.). Theoretical and Applied Genetics 107, 920926CrossRefGoogle ScholarPubMed
Rubeena, , Taylor, P. W. J., Ades, P. K. & Ford, R. (2006). QTL mapping of resistance in lentil (Lens culinaris ssp. culinaris) to ascochyta blight (Ascochyta lentis). Plant Breeding 125, 506512.CrossRefGoogle Scholar
Ruffel, S., Freixes, S., Balzergue, S., Tillard, P., Jeudy, C., Martin-Magniette, M. L., Van Der Merwe, M. J., Kakar, K., Gouzy, J., Fernie, A. R., Udvardi, M., Salon, C., Gojon, A. & Lepetit, M. (2008). Systemic signaling of the plant nitrogen status triggers specific transcriptome responses depending on the nitrogen source in Medicago truncatula. Plant Physiology 146, 20202035.CrossRefGoogle ScholarPubMed
Saha, G. C., Sarker, A., Chen, W., Vandemark, G. J. & Muehlbauer, F. J. (2010 a). Inheritance and linkage map positions of genes conferring resistance to Stemphylium blight in lentil. Crop Science 50, 18311839.CrossRefGoogle Scholar
Saha, G. C., Sarker, A., Chen, W., Vandemark, G. J., Muehlbauer, F. J. (2010 b). Identification of markers associated with genes for rust resistance in Lens culinaris Medik. Euphytica 175, 261265.CrossRefGoogle Scholar
Salvi, S. & Tuberosa, R. (2005). To clone or not to clone plant QTLs: present and future challenges. Trends in Plant Science 10, 297304.CrossRefGoogle ScholarPubMed
Sandal, N., Krusell, L., Radutoiu, S., Olbryt, M., Pedrosa, A., Stracke, S., Sato, S., Kato, T., Tabata, S., Parniske, M., Bachmair, A., Ketelsen, T. & Stougaard, J. (2002). A genetic linkage map of the model legume Lotus japonicus and strategies for fast mapping of new loci. Genetics 161, 16731683.CrossRefGoogle ScholarPubMed
Sandhu, D., Schallock, K. G., Rivera-Velez, N., Lundeen, P., Cianzio, S. & Bhattacharyya, M. K. (2005). Soybean Phytophthora resistance gene Rps8 maps closely to the Rps3 region. Journal of Heredity 96, 536541.CrossRefGoogle Scholar
Sato, S., Nakamura, Y., Kaneko, T., Asamizu, E., Kato, T., Nakao, M., Sasamoto, S., Watanabe, A., Ono, A., Kawashima, K., Fujishiro, T., Katoh, M., Kohara, M., Kishida, Y., Minami, C., Nakayama, S., Nakazaki, N., Shimizu, Y., Shinpo, S., Takahashi, C., Wada, T., Yamada, M., Ohmido, N., Hayashi, M., Fukui, K., Baba, T., Nakamichi, T., Mori, H. & Tabata, S. (2008). Genome structure of the legume, Lotus japonicus. DNA Research 15, 227239.CrossRefGoogle ScholarPubMed
Schlueter, J. A., Goicoechea, J. L., Collura, K., Gill, N., Lin, J. Y., Yu, Y., Kudrna, D., Zuccolo, A., Vallejos, C. E., Muñoz-Torres, M., Blair, M. W., Tohme, J., Tomkins, J., Mcclean, P., Wing, R. A. & Jackson, S. A. (2008). BAC-end sequence analysis and a draft physical map of the common bean (Phaseolus vulgaris L.) genome. Tropical Plant Biology 1, 4048.CrossRefGoogle Scholar
Schmutz, J., Cannon, S. B., Schlueter, J. M. A. J., Mitros, T., Nelson, W., Hyten, D., Song, Q., Thelen, J. J., Cheng, J., Xu, D., Hellsten, U., May, G. D., Yu, Y., Sakurai, T., Umezawa, T., Bhattacharyya, M. K., Sandhu, D., Valliyodan, B., Lindquist, E., Peto, M., Grant, D., Shu, S., Goodstein, D., Barry, K., Futrell-Griggs, M., Abernathy, B., Du, J., Tian, Z., Zhu, L., Gill, N., Joshi, T., Libault, M., Sethuraman, A., Zhang, X. C., Shinozaki, K., Nguyen, H. T., Wing, R. A., Cregan, P., Specht, J., Grimwood, J., Rokhsar, D., Stacey, G., Shoemaker, R. C. & Jackson, S. A. (2010). Genome sequence of the palaeopolyploid soybean. Nature 463, 178183.CrossRefGoogle ScholarPubMed
Schneider, K. A., Grafton, K. F. & Kelly, J. D. (2001). QTL analysis of resistance to fusarium root rot in bean. Crop Science 41, 535542.CrossRefGoogle Scholar
Seehalak, W., Tomooka, N., Waranyuwat, A., Thipyapong, P., Laosuwan, P., Kaga, A. & Vaughan, D. A. (2006). Genetic diversity of the Vigna germplasm from Thailand and neighboring regions revealed by AFLP analysis. Genetic Resources and Crop Evolution 53, 10431059.CrossRefGoogle Scholar
Sharma, H. C., Clement, S. L., Ridsdill-Smith, T. J., Ranga Rao, G. V., El Bouhssini, M., Ujagir, R., Srivastava, C. P. & Miles, M. (2008). Insect pest management in food legumes, the future strategies. In Food Legumes for Nutritional Security and Sustainable Agriculture. Proceedings of the 4th International Food Legumes Research Conference, 18–22 October 2005, New Delhi, India, Volume 1 (Ed. Kharkwal, M. C.), pp. 522544. New Delhi, India: IFLRC.Google Scholar
Sharma, K. D., Winter, P., Kahl, G. & Muehlbauer, F. J. (2004). Molecular mapping of Fusarium oxysporum f. sp. Ciceris race 3 resistance gene in chickpea. Theoretical and Applied Genetics 108, 12431248.CrossRefGoogle ScholarPubMed
Shi, A., Chen, P., Li, D., Zheng, C., Zhang, B. & Hou, A. (2009). Pyramiding multiple genes for resistance to soybean mosaic virus in soybean using molecular markers. Molecular Breeding 23, 113124.CrossRefGoogle Scholar
Shoemaker, R. C., Schlueter, J. A., Cregan, P. & Vodkin, L. (2003). The status of soybean genomics and its role in the development of soybean biotechnologies. AgBioForum 6, 47.Google Scholar
Singh, K. B., Foley, R. C. & Onate-Sanchez, L. (2002). Transcription factors in plant defense and stress responses. Current Opinion in Plant Biology 5, 430436.CrossRefGoogle ScholarPubMed
Singh, O. & Kumar, S. (1994). Phenotypic stability of yield and related characters in desi gram (Cicer arietinum). Indian Journal of Agriculture Science 64, 815820.Google Scholar
Sledge, M. K., Bouton, J. H., Dall'Agnoll, M., Parrott, W. A. & Kochert, G. (2002). Identification and confirmation of aluminum tolerance QTL in diploid Medicago sativa subsp. coerulea. Crop Science 42, 11211128.CrossRefGoogle Scholar
Smith, J. (2010). Glycine max (L.) Merr. FABACEAE. In USDA, ARS, National Genetic Resources Program: Germplasm Resources Information Network (GRIN) Taxonomy for Plants[ Online Database]. Beltsville, MD: National Germplasm Resources Laboratory. Available online at: http://www.ars-grin.gov/cgi-bin/npgs/acc/search.pl?accid=PI+659348 (verified 19 May 2011).Google Scholar
Smýkal, P., Hýbl, M., Corander, J., Jarkovský, J., Flavell, A. J. & Griga, M. (2008). Genetic diversity and population structure of pea (Pisum sativum L.) varieties derived from combined retrotransposon, microsatellite and morphological marker analysis. Theoretical and Applied Genetics 117, 413424.CrossRefGoogle ScholarPubMed
Solanki, R. K., Singh, S. & Kumar, J. (2010). Molecular marker assisted testing of hybridity of F1 plants in lentil. Journal of Food Legumes 23, 2124.Google Scholar
Souframanien, J. & Gopalakrishna, T. (2006). ISSR and SCAR markers linked to the Mungbean yellow mosaic virus (MYMV) resistance gene in blackgram (Vigna mungo (L.) Hepper). Plant Breeding 125, 619622.CrossRefGoogle Scholar
Spencer, M. M., Landau-Ellis, D., Meyer, E. J. & Pantalone, V. R. (2004). Molecular markers associated with linolenic acid content in soybean. Journal of American Oil Chemists’ Society 81, 559562.CrossRefGoogle Scholar
Srinivasa Reddy, M. S., Dinkins, R. D. & Collins, G. B. (2003). Gene silencing in transgenic soybean plants transformed via particle bombardment. Plant Cell Reports 21, 676683.CrossRefGoogle Scholar
Stacey, G., Libault, M., Brechenmacher, L., Wan, J. & May, G. D. (2006). Genetics and functional genomics of legume nodulation. Current Opinion in Plant Biology 9, 110121.CrossRefGoogle ScholarPubMed
Stavely, J. R. (2000). Pyramiding rust and viral resistance genes using traditional and marker techniques in common bean. Annual Report of the Bean Improvement Cooperative 43, 13.Google Scholar
Stracke, S., Kistner, C., Yoshida, S., Mulder, L., Sato, S., Kaneko, T., Tabata, S., Sandal, N., Stougaard, J., Szczyglowski, K. & Parniske, M. (2002). A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417, 959962.CrossRefGoogle ScholarPubMed
Subramanian, S., Graham, M. Y., Yu, O. & Graham, T. L. (2005). RNA interference of soybean isoflavone synthase genes leads to silencing in tissues distal to the transformation site and to enhanced susceptibility to Phytophthora sojae. Plant Physiology 137, 13451353.CrossRefGoogle Scholar
Syvanen, A. C. (2005). Toward genome-wide SNP genotyping. Nature Genetics 37, S5S10.CrossRefGoogle ScholarPubMed
Tadege, M., Wen, J., He, J., Tu, H., Kwak, Y., Eschstruth, A., Cayrel, A., Endre, G., Zhao, P. X., Chabaud, M., Ratet, P. & Mysore, K. S. (2008). Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula. Plant Journal 54, 335347.CrossRefGoogle ScholarPubMed
Tadege, M., Wang, T. L., Wen, J., Ratet, P. & Mysore, K. S. (2009). Mutagenesis and beyond! Tools for understanding legume biology. Plant Physiology 151, 978984.CrossRefGoogle ScholarPubMed
Tadmor, Y., Zamir, D. & Ladizinsky, G. (1987). Genetic mapping of an ancient translocation in the genus Lens. Theoretical and Applied Genetics 73, 883892.CrossRefGoogle ScholarPubMed
Tanksley, S. D. & Nelson, J. C. (1996). Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theoretical and Applied Genetics 92, 191203.CrossRefGoogle ScholarPubMed
Tao, Q., Chang, Y. L., Wang, J., Chen, H., Islam-Faridi, M. N., Scheuring, C., Wang, B., Stelly, D. M. & Zhang, H. B. (2001). Bacterial artificial chromosome-based physical map of the rice genome constructed by restriction fingerprint analysis. Genetics 158, 17111724.CrossRefGoogle ScholarPubMed
TAR'AN, B., Michaels, T. E. & Pauls, K. P. (2001). Mapping genetic factors affecting the reaction to Xanthomonas axonopodis pv. phaseoli in Phaseolus vulgaris L. under field conditions. Genome 44, 10451056.CrossRefGoogle Scholar
TAR'AN, B., Buchwaldt, L., Tullu, A., Banniza, S., Warkentin, T. D. & Vandenberg, A. (2003 a). Using molecular markers to pyramid genes for resistance to ascochyta blight and anthracnose in lentil (Lensculinaris Medik.). Euphytica 134, 223230.CrossRefGoogle Scholar
TAR'AN, B., Warkentin, T., Somers, D. J., Miranda, D., Vandenberg, A., Blade, S., Woods, S., Bing, D., Xue, A., Dekoeyer, D. & Penner, G. (2003 b). Quantitative trait loci for lodging resistance, plant height and partial resistance to Mycosphaerella blight in field pea (Pisum sativum L.). Theoretical and Applied Genetics 107, 14821491.CrossRefGoogle ScholarPubMed
Tester, M. & Langridge, P. (2010). Breeding technologies to increase crop production in a changing world. Science 327, 818822.CrossRefGoogle Scholar
Timko, M. P., Rushton, P. J., Laudeman, T. W., Bokowiec, M. T., Chipumuro, E., Cheung, F., Town, C. D. & Chen, X. (2008). Sequencing and analysis of the gene-rich space of cowpea. BMC Genomics 9, 103. DOI: 10.1186/1471-2164-9-103.CrossRefGoogle ScholarPubMed
Timmerman, G. M., Frew, T. J., Weeden, N. F., Miller, A. L. & Goulden, D. S. (1994). Linkage analysis of .of er-1 a recessive Pisum sativum gene for resistance to powdery mildew fungus (Erysiphe Pisi D.C.). Theoretical and Applied Genetics 88, 10501055.CrossRefGoogle ScholarPubMed
Torres, A. M., Weeden, N. F. & Martin, A. (1993). Linkage among isozyme, RFLP and RAPD markers in Vicia faba. Theoretical and Applied Genetics 85, 937945.CrossRefGoogle ScholarPubMed
Torres, A. M., Avila, C. M., Gutierrez, N., Palomino, C., Moreno, M. T. & Cubero, J. I. (2010). Marker-assisted selection in faba bean (Vicia faba L.). Field Crops Research 115, 243252.CrossRefGoogle Scholar
Tullu, A., Buchwaldt, L., Warkentin, T., TAR'AN, B. & Vandenberg, A. (2003). Genetics of resistance to anthracnose and identification of AFLP and RAPD markers linked to the resistance gene in PI 320937 germplasm of lentil (Lens culinaris Medikus). Theoretical and Applied Genetics 106, 428434.CrossRefGoogle Scholar
Tullu, A., TAR'AN, B., Warkentin, T. & Vandenberg, A. (2008). Construction of an intraspecific linkage map and QTL Analysis for earliness and plant height in lentil. Crop Science 48, 22542264.CrossRefGoogle Scholar
Tuteja, J. H., Clough, S. J., Chan, W. C. & Vodkin, L. O. (2004). Tissue-Specific Gene Silencing Mediated by a naturally occurring chalcone synthase gene cluster in Glycine max. Plant Cell 16, 819835.CrossRefGoogle ScholarPubMed
Ubi, B. E., Mignouna, H. & Thottappilly, G. (2000). Construction of a genetic linkage map and QTL analysis using a recombinant inbred population derived from an interspecific cross of cowpea (Vigna unguiculata (L.) Walp.). Breeding Science 50, 161172.CrossRefGoogle Scholar
Urrea, C. A., Miklas, P. N., Beaver, J. S. & Riley, R. H. (1996). A codominant randomly amplified polymorphic DNA (RAPD) marker useful for indirect selection of bean golden mosaic virus resistance in common bean. Journal of the American Society for Horticultural Science 121, 10351039.CrossRefGoogle Scholar
Valderrama, M. R., Román, B., Satovic, Z., Rubiales, D., Cubero, J. I. & Torres, A. M. (2004). Locating quantitative trait loci associated with Orobanche crenata resistance in pea. Weed Research 44, 323328.CrossRefGoogle Scholar
Vallejos, C. E., Sakiyama, N. S. & Chase, C. D. (1992). Molecular marker-based linkage map of Phaseolus vulgaris L. Genetics 131, 733740.CrossRefGoogle ScholarPubMed
Van De Wouw, M., Van Hinten, T., Kik, C., Van Treuren, R. & Visser, B. (2010). Genetic diversity trends in twentieth century crop cultivars: a meta analysis. Theoretical and Applied Genetics 120, 12411252.CrossRefGoogle ScholarPubMed
Van Der Linden, C. G., Wouters, D. C. A. E., Mihalka, V., Kochieva, E. Z., Smulders, M. J. M. & Vosman, B. (2004). Efficient targeting of plant disease resistance loci using NBS profiling. Theoretical and Applied Genetics 109, 384393.CrossRefGoogle ScholarPubMed
Van Toai, T. T., St. Martin, S. K., Chase, K., Boru, G., Schnipke, V., Schmitthenner, A. F. & Lark, K. G. (2001). Identification of a QTL associated with tolerance of soybean to soil water logging. Crop Science 41, 12471252.CrossRefGoogle Scholar
Vandenbosch, K. & Stacey, G. (2003). Summaries of legume genomics projects from around the globe. Community resources for crops and models. Plant Physiology 131, 840865.CrossRefGoogle ScholarPubMed
Varshney, R. K., Graner, A. & Sorrells, M. E. (2005). Genic microsatellite markers in plants: features and applications. Trends in Biotechnology 23, 4855.CrossRefGoogle ScholarPubMed
Varshney, R. K., Close, T. J., Singh, N. K., Hoisington, D. A. & Cook, D. R. (2009 a). Orphan legume crops enter the genomics era! Current Opinion in Plant Biology 12, 202210.CrossRefGoogle ScholarPubMed
Varshney, R. K., Bertioli, D. J., Moretzsohn, M. C., Vadez, V., Krishnamurthy, L., Aruna, R., Nigam, S. N., Moss, B. J., Seetha, K., Ravi, K., He, G., Knapp, S. J. & Hoisington, D. A. (2009 b). The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.). Theoretical and Applied Genetics 118, 729739.CrossRefGoogle ScholarPubMed
Varshney, R. K., Penmetsa, R. V., Dutta, S., Kulwal, P. L., Saxena, R. K., Datta, S., Sharma, T. R., Rosen, B., Carrasquilla-Garcia, N., Farmer, A. D., Dubey, A., Saxena, K. B., Gao, J., Fakrudin, B., Singh, M. N., Singh, B. P., Wanjari, K. B., Yuan, M., Srivastava, R. K., Kilian, A., Upadhyaya, H. D., Mallikarjuna, N., Town, C. D., Bruening, G. E., He, G., May, G. D., Mccombie, R., Jackson, S. A., Singh, N. K. & Cook, D. R. (2010 a). Pigeonpea genomics initiative (PGI): an international effort to improve crop productivity of pigeonpea (Cajanus cajan L.). Molecular Breeding 26, 393408.CrossRefGoogle ScholarPubMed
Varshney, R. K., Glaszmann, J. C., Leung, H. & Ribaut, J. M. (2010 b). More genomic resources for less studied crops. Trends in Biotechnology 28, 452460.CrossRefGoogle ScholarPubMed
Vaz Patto, M. C., Torres, A. M., Koblizkova, A., Macas, J. & Cubero, J. I. (1999). Development of a genetic composite map of Vicia faba using F2 populations derived from trisomic plants. Theoretical and Applied Genetics 98, 736743.CrossRefGoogle Scholar
Verdier, J., Kakar, K., Gallardo, K., Le Signor, C., Aubert, G., Schlereth, A., Town, C. D., Udvardi, M. K. & Thompson, R. D. (2008). Gene expression profiling of Medicago truncatula transcription factors identifies putative regulators of grain legume seed filling. Plant Molecular Biology 67, 567580.CrossRefGoogle ScholarPubMed
Vir, R., Bhat, K. V. & Lakhanpaul, S. (2009). Analysis of population substructure, genetic differentiation and phylogenetic relationships among selected Asiatic Vigna Savi species. Genetic Resources and Crop Evolution 56, 783795.CrossRefGoogle Scholar
Vodkin, L. O., Khanna, A., Shealy, R., Clough, S. J., Gonzalez, D. O., Philip, R., Zabala, G., Thibaud-Nissen, F., Sidarous, M., Strömvik, M. V., Shoop, E., Schmidt, C., Retzel, E., Erpelding, J., Shoemaker, R. C., Rodriguez-Huete, A. M., Polacco, J. C., Coryell, V., Keim, P., Gong, G., Liu, L., Pardinas, J. & Schweitzer, P. (2004). Microarrays for global expression constructed with a low redundancy set of 27,500 sequenced cDNAs representing an array of developmental stages and physiological conditions of the soybean plant. BMC Genomics 5, 7390. DOI: 10.1186/1471-2164-5-73.CrossRefGoogle Scholar
Wang, X., Sato, S., Tabata, S. & Kawasaki, S. (2008). A high-density linkage map of Lotus japonicus based on AFLP and SSR markers. DNA Research 15, 323332.CrossRefGoogle ScholarPubMed
Weeden, N. F. (2007). Genetic changes accompanying the domestication of Pisum sativum: is there a common genetic basis to the ‘domestication syndrome’ for legumes? Annals of Botany 100, 10171025.CrossRefGoogle Scholar
Weeden, N. F., Muehlbauer, F. J. & Ladizinsky, G. (1992). Extensive conservation of linkage relationships between pea and lentil genetic maps. Journal of Heredity 83, 123129.CrossRefGoogle Scholar
Winter, P., Benko-Iseppon, A. M., Huttel, B., Ratnaparkhe, M., Tullu, A., Sonnante, G., Pfaff, T., Tekeoglu, M., Santra, D., Sant, V. J., Rajesh, P. N., Kahl, G. & Muehlbauer, F. J. (2000). A linkage map of the chickpea (Cicer arietinum L.) genome based on recombinant inbred lines from a C. arietinum×C. reticulatum cross: localization of resistance genes for fusarium wilt race 4 and 5. Theoretical and Applied Genetics 101, 11151163.CrossRefGoogle Scholar
Wojciechowski, M. F., Lavin, M. & Sanderson, M. J. (2004). A phylogeny of legumes (leguminosae) based on analysis of the plastid MATK gene resolves many well-supported subclades within the family. American Journal of Botany 91, 18461862.CrossRefGoogle ScholarPubMed
Wu, C., Sun, S., Nimmakayala, P., Santos, F. A., Meksem, K., Springman, R., Ding, K., Lightfoot, D. A. & Zhang, H. B. (2004). A BAC- and BIBAC-based physical map of the soybean genome. Genome Research 14, 319326.CrossRefGoogle ScholarPubMed
Xiong, L. Z., Liu, K. D., Dai, X. K., Xu, C. G. & Zhang, Q. (1999). Identification of genetic factors controlling domestication-related traits of rice using an F2 population of a cross between Oryza sativa and O. rufipogon. Theoretical and Applied Genetics 98, 243251.CrossRefGoogle Scholar
Xu, M., Song, J., Cheng, Z., Jiang, J. & Korban, S. S. (2001). A bacterial artificial chromosome (BAC) library of Malus floribunda 821 and contig construction for positional cloning of the apple scab resistance gene Vf. Genome 44, 11041113.CrossRefGoogle ScholarPubMed
Yahyaoui, F. E., Kuster, H., Amor, B. B., Hohnjec, N., Puhler, A., Becker, A., Gouzy, J., Vernie, T., Gough, C., Niebel, A., Godiard, L. & Gamas, P. (2004). Expression profiling in Medicago truncatula identifies more than 750 genes differentially expressed during nodulation, including many potential regulators of the symbiotic program. Plant Physiology 136, 31593176.CrossRefGoogle ScholarPubMed
Yaish, M. W., Sáenz De Miera, L. E. & Pérez De La Vega, M. (2004). Isolation of a family of resistance gene analogue sequences of the nucleotide binding site (NBS) type from Lens species. Genome 47, 650659.CrossRefGoogle ScholarPubMed
Yang, H., Boersma, J. G. M., Buirchell, B. J. & Sweetingham, M. W. (2004 a). Development and implementation of a sequence-specific PCR marker linked to a gene conferring resistance to anthracnose disease in narrow-leafed lupin (Lupinus angustifolius L.). Molecular Breeding 14, 145151.CrossRefGoogle Scholar
Yang, H., Shankar, M., Buirchell, B. J., Sweetingham, M. W., Caminero, C. & Smith, P. M. C. (2002). Development of molecular markers using MFLP linked to a gene conferring resistance to Diaporthe toxica in narrow-leafed lupin (Lupinus angustifolius L.). Theoretical and Applied Genetics 105, 265270.CrossRefGoogle ScholarPubMed
Yang, S., Gao, M., Xu, C., Gao, J., Deshpande, S., Lin, S., Roe, B. A. & Zhu, H. (2004 b). Alfalfa benefits from Medicago truncatula: the RCT1 gene from M. truncatula confers broad-spectrum resistance to anthracnose in alfalfa. Proceedings of the National Academy of Sciences of the United States of America 105, 1216412169.CrossRefGoogle Scholar
Yang, S., Pang, W., Ash, G., Harper, J., Carling, J., Wenzl, P., Huttner, E., Zong, X. X. & Kilian, A. (2006). Low level of genetic diversity in cultivated pigeonpea compared to its wild relatives is revealed by diversity arrays technology. Theoretical Applied Genetics 113, 585595.CrossRefGoogle ScholarPubMed
Yang, S., Tang, F., Gao, M., Krishnan, H. B. & Zhu, H. (2010). R gene-controlled host specificity in the legume–rhizobia symbiosis. Proceedings of the National Academic of Sciences of the United States of America 107, 1873518740.CrossRefGoogle ScholarPubMed
Young, N. D. & Udvardi, M. (2009). Translating Medicago truncatula genomics to crop legumes. Current Opinion in Plant Biology 12, 193201.CrossRefGoogle ScholarPubMed
Young, N. D., Danesh, D., Menancio-Hautea, D. & Kumar, L. (1993). Mapping oligogenic resistance to powdery mildew in mungbean with RFLPs. Theoretical and Applied Genetics 87, 243249.CrossRefGoogle ScholarPubMed
Young, N. D., Cannon, S. B., Sato, S., Kim, D., Cook, D. R., Town, C. D., Roe, B. A. & Tabata, S. (2005). Sequencing the genespaces of Medicago truncatula and Lotus japonicus. Plant Physiology 137, 11741181.CrossRefGoogle ScholarPubMed
Yu, J. & Buckler, E. S. (2006). Genetic association mapping and genome organization of maize. Current Opinion in Biotechnology 17, 155160.CrossRefGoogle ScholarPubMed
Yu, K., Park, S. J., Poysa, V. & Gepts, P. (2000). Integration of simple sequence repeat (SSR) markers into a molecular linkage map of common bean (Phaseolus vulgaris L.). Journal of Heredity 91, 429434.CrossRefGoogle ScholarPubMed
Yu, K., Park, S. J., Zhang, B., Haffner, M. & Poysa, V. (2004). An SSR marker in the nitrate reductase gene of common bean is tightly linked to a major gene conferring resistance to common bacterial blight. Euphytica 138, 8995.CrossRefGoogle Scholar
Zhang, Y., Sledge, M. K. & Bouton, J. H. (2007). Genome mapping of white clover (Trifolium repens L.) and comparative analysis within the Trifolieae using cross-species SSR markers. Theoretical and Applied Genetics 114, 13671378.CrossRefGoogle ScholarPubMed
Zheng, H. F., Chen, L. D. & Han, X. Z. (2009). The effects of global warming on soybean yields in a long-term fertilization experiment in Northeast China. Journal of Agricultural Science, Cambridge 147, 569580.CrossRefGoogle Scholar
Zhu, B. G. & Sun, Y. R. (2006). Inheritance of the four-seeded-pod trait in a soybean mutant and marker-assisted selection for this trait. Plant Breeding 125, 405407.CrossRefGoogle Scholar
Zhu, C., Gore, M., Buckler, E. S. & Yu, J. (2008). Status and prospects of association mapping in plants. Plant Genome 1, 520.CrossRefGoogle Scholar
Zhu, H., Choi, H. K., Cook, D. R. & Shoemaker, R. C. (2005). Bridging model and crop legumes through comparative genomics. Plant Physiology 137, 11891196.CrossRefGoogle ScholarPubMed
Zohary, D. & Hopf, M. (2000). Domestication of Plants in the Old World. The Origin and Spread of Cultivated Plants in West Asia, Europe and the Nile Valley, 3rd edn. Oxford, UK: Oxford University Press.Google Scholar
Zong, X. X., Redden, R. J., Liu, Q. C., Wang, S., Guan, J., Liu, J., Xu, Y., Liu, X., Gu, J., Yan, L., Ades, P. & Ford, R. (2009). Analysis of a diverse global Pisum sp. collection and comparison to a Chinese local P. sativum collection with microsatellite markers. Theoretical and Applied Genetics 118, 193204.CrossRefGoogle ScholarPubMed