Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-18T23:38:58.443Z Has data issue: false hasContentIssue false

Marine ice sheet stability

Published online by Cambridge University Press:  15 March 2012

Christian Schoof*
Affiliation:
Department of Earth and Ocean Sciences, University of British Columbia, 6339 Stores Road, Vancouver, BC, V6T 1Z4, Canada
*
Email address for correspondence: cschoof@eos.ubc.ca

Abstract

We examine the stability of two-dimensional marine ice sheets in steady state. The dynamics of marine ice sheets is described by a viscous thin-film model with two Stefan-type boundary conditions at the moving boundary or ‘grounding line’ that marks the transition from grounded to floating ice. One of these boundary conditions constrains ice thickness to be at a local critical value for flotation, which depends on depth to bedrock at the grounding line. The other condition sets ice flux as a function of ice thickness at the grounding line. Depending on the shape of the bedrock, multiple equilibria may be possible. Using a linear stability analysis, we confirm a long-standing heuristic argument that asserts that the stability of these equilibria is determined by a simple mass balance consideration. If an advance in the grounding line away from its steady-state position leads to a net mass gain, the steady state is unstable, and stable otherwise. This also confirms that grounding lines can only be stable in positions where bedrock slopes downwards sufficiently steeply.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chugunov, V. A. & Wilchinsky, A. V. 1996 Modelling of marine glacier and ice-sheet-ice-shelf transition zone based on asymptotic analysis. Ann. Glaciol. 23, 5967.CrossRefGoogle Scholar
2. Dupont, T. K. & Alley, R. B. 2005 Assessment of the importance of ice-shelf buttressing to ice sheet flows. Geophys. Res. Lett. 32, L04503.CrossRefGoogle Scholar
3. Durand, G., Gagliardini, O., de Fleurian, B., Zwinger, T. & LeMeur, E. 2009 Marine ice sheet dynamics: Hysteresis and neutral equilibrium. J. Geophys. Res. 114, F03009.CrossRefGoogle Scholar
4. Fowler, A. C. 1981 A theoretical treatment of the sliding of glaciers in the absence of cavitation. Phil. Trans. R. Soc. Lond. 298 (1445), 637685.Google Scholar
5. Fowler, A. C. 2001 Modelling the flow of glaciers and ice sheets. In Continuum Mechanics and Applications in Geophysics and the Environment (ed. Straughan, B., Greve, R., Ehrentraut, H. & Wang, Y. ). pp. 276304. Springer.Google Scholar
6. Goldberg, D., Holland, D. M. & Schoof, C. 2009 Grounding line movement and ice shelf buttressing in marine ice sheets. J. Geophys. Res. 114, F04026.CrossRefGoogle Scholar
7. Gomez, N., Mitrovica, J. X., Huybers, P. & Clark, P. U. 2010 Sea level as a stabilizing factor for marine-ice-sheet grounding lines. Nature Geosci. 3 (12), 850853.CrossRefGoogle Scholar
8. Halfar, P. 1981 On the dynamics of ice sheets. J. Geophys. Res. 86 (NC11), 10651072.CrossRefGoogle Scholar
9. Hindmarsh, R. C. A. 1997 Normal modes of an ice sheet. J. Fluid Mech. 502, 1740.CrossRefGoogle Scholar
10. Katz, R. F. & Worster, M. G. 2010 Stability of ice-sheet grounding lines. Proc. R. Soc. Lond. A 466 (2118), 15971620.Google Scholar
11. MacAyeal, D. R. & Barcilon, V. 1988 Ice-shelf response to ice-stream discharge fluctuations: I. unconfined ice tongues. J. Glaciol. 34 (116), 121127.CrossRefGoogle Scholar
12. Robison, R. A. V., Huppert, H. E. & Worster, M. G. 2010 Dynamics of viscous grounding lines. J. Fluid Mech. 648, 363380.CrossRefGoogle Scholar
13. Schoof, C. 2007a Ice sheet grounding line dynamics: steady states, stability and hysteresis. J. Geophys. Res. 112, F03S28.CrossRefGoogle Scholar
14. Schoof, C. 2007b Marine ice sheet dynamics. Part 1. The case of rapid sliding. J. Fluid Mech. 573, 2755.CrossRefGoogle Scholar
15. Schoof, C. 2011 Marine ice sheet dynamics. Part 2. A Stokes flow contact problem. J. Fluid Mech. 679, 122155.CrossRefGoogle Scholar
16. Weertman, J. 1974 Stability of the junction of an ice sheet and an ice shelf. J. Glaciol. 13 (67), 313.CrossRefGoogle Scholar
17. Wilchinsky, A. V. 2001 Studying ice sheet stability using the method of separation of variables. Geophys. Astrophys. Fluid Dyn. 94, 1545.CrossRefGoogle Scholar
18. Wilchinsky, A. V. 2009 Linear stability analysis of an ice sheet interacting with the ocean. J. Glaciol. 55 (189), 1320.CrossRefGoogle Scholar
19. Winkelmann, R., Martin, M. A., Haseloff, M., Albrecht, T., Bueler, E., Khroulev, C. & Levermann, A. 2011 The potsdam parallel ice sheet model (pism-pik). Part 1. Model description. The Cryosphere 5 (3), 715726.CrossRefGoogle Scholar