Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-29T09:45:29.438Z Has data issue: false hasContentIssue false

Investigation on the atomic structural evolution of as-prepared and annealed ZrCuAl metallic glasses

Published online by Cambridge University Press:  07 February 2012

Liang Yang*
Affiliation:
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People’s Republic of China
Cai-Long Huang
Affiliation:
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People’s Republic of China
Gu-Qing Guo
Affiliation:
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: yangliang@nuaa.edu.cn
Get access

Abstract

Atomic structures of the Zr48Cu45Al7 as-prepared and annealed metallic glasses (MGs) were investigated by performing the reverse Monte Carlo simulation on the synchrotron radiation-based experiments. It was found that although the annealed sample remains completely amorphous, the volumes of the Al-centered clusters evidently expand, which is attributed to the relatively longer Al–Zr bonds. As a result, the role of Al atoms as the glue atoms to connect and fix the Zr- and Cu-centered large clusters is accordingly weakened, which leads to the ease of the rearrangement of atoms and clusters in the glass state. This study provides an insight into the microstructures of MGs, which extends understanding of the structural evolution in the glass alloys during annealing prior to the precipitation of nanocrystals.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).CrossRefGoogle Scholar
2.Wang, W.H., Dong, C., and Shek, C.H.: Bulk metallic glasses. Mater. Sci. Eng.,R 44, 45 (2004).CrossRefGoogle Scholar
3.Greer, A.L.: Metallic glasses. Science 267, 1947 (1995).CrossRefGoogle ScholarPubMed
4.Yoshizawa, Y., Ogurna, S., and Yamauchi, K.: New Fe-based soft magnetic alloys composed of ultrafine grain structure. J. Appl. Phys. 64, 6044 (1988).CrossRefGoogle Scholar
5.Inoue, A., Horio, Y., Kim, Y.H., and Masumoto, T.: Elevated-temperature strength of an Al88Ni9Ce2Fe1 amorphous alloy containing nanoscale fcc-Al particles. Mater. Trans. JIM 33, 669 (1992).CrossRefGoogle Scholar
6.Inoue, A., Kawase, D., Tsai, A.P., Zhang, T., and Masumoto, T.: Stability and transformation to crystalline phases of amorphous Zr-Al-Cu alloys with significant supercooled liquid region. Mater. Sci. Eng., A 178, 255 (1994).CrossRefGoogle Scholar
7.Murty, B.S. and Hono, K.: Nanoquasicrystallization of Zr-based metallic glasses. Mater. Sci. Eng., A 312, 253 (2001).CrossRefGoogle Scholar
8.Ishii, A., Iwase, A., Fukumoto, Y., Yokoyama, Y., Konno, T.J., and Hori, F.: Effect of thermal annealing on the local structure in ZrCuAl bulk metallic glass. J. Alloys Compd 504, S230 (2010).CrossRefGoogle Scholar
9.Guo, Q., Noh, J.H., Liaw, P.K., Rack, P.D., Li, Y., and Thompson, C.V.: Density change upon crystallization of amorphous Zr-Cu-Al thin films. Acta Mater. 58, 3633 (2010).CrossRefGoogle Scholar
10.Saida, J., Matsushita, M., Li, C., and Inoue, A.: Formation of the icosahedral quasicrystalline phase in Zr70Pd30 binary glassy alloy. Philos. Mag. Lett. 81, 39 (2001).CrossRefGoogle Scholar
11.Lu, K.: Nanocrystalline metals crystallized from amorphous solids: Nanocrystallization, structure, and properties. Mater. Sci. Eng., R 16, 161 (1996).CrossRefGoogle Scholar
12.Chen, H., He, Y., Shiflet, G.J., and Poon, S.J.: Deformation-induced nanocrystal formation in shear bands of amorphous alloys. Nature 367, 541 (1994).CrossRefGoogle Scholar
13.Nagase, T., Nakamura, M., and Umakoshi, Y.: Electron irradiation induced nano-crystallization in Zr66.7Ni33.3 amorphous alloy and Zr60Al15Ni25 metallic glass. Intermetallics 15, 211 (2007).CrossRefGoogle Scholar
14.Saida, J., Setyawan, A.D., and Matsubara, E.: Effect of relaxation state on nucleation and grain growth of nanoscale quasicrystal in Zr-based bulk metallic glasses prepared under various cooling rates. Appl. Phys. Lett. 99, 061903 (2011).CrossRefGoogle Scholar
15.Loffler, J.F. and Johnson, W.L.: Model for decomposition and nanocrystallization of deeply undercooled Zr41.2Ti13.8Cu12.5Ni10Be22. Appl. Phys. Lett. 76, 3394 (2000).CrossRefGoogle Scholar
16.He, G., Bian, Z., and Chen, G.L.: Structures and properties of a Zr-based bulk glass alloy after annealing. Mater. Sci. Eng., A 270, 291 (1999).CrossRefGoogle Scholar
17.Wang, X.L., Almer, J., Liu, C.T., Wang, Y.D., Zhao, J.K., Stoica, A.D., Haeffner, D.R., and Wang, W.H.: In situ synchrotron study of phase transformation behaviors in bulk metallic glass by simultaneous diffraction and small angle scattering. Phys. Rev. Lett. 91, 265501 (2003).CrossRefGoogle ScholarPubMed
18.Wang, D., Tan, H., and Li, Y.: Multiple maxima of GFA in three adjacent eutectics in Zr–Cu–Al alloy system—A metallographic way to pinpoint the best glass forming alloys. Acta Mater. 53, 2969 (2006).CrossRefGoogle Scholar
19.Yang, L., Jiang, J.Z., Liu, T., Hu, T.D., and Uruga, T.: Atomic structure in Zr70Cu29Pd1 metallic glass. Appl. Phys. Lett. 87, 061918 (2005).CrossRefGoogle Scholar
20.Luo, W.K., Sheng, H.W., Alamgir, F.M., Bai, J.M., He, J.H., and Ma, E.: Icosahedral short-range order in amorphous alloys. Phys. Rev. Lett. 92, 145502 (2004).CrossRefGoogle ScholarPubMed
21.Yang, L., Yin, S., Wang, X.D., Cao, Q.P., Jiang, J.Z., Saksl, K., and Franz, H.: Atomic structure in Zr70Ni30 metallic glass. J. Appl. Phys. 102, 083512 (2007).CrossRefGoogle Scholar
22.Finney, J.L.: Modelling the structures of amorphous metal and alloys. Nature 266, 309 (1977).CrossRefGoogle Scholar
23.Stepanyuk, V.S., Szasz, A., Katsnelson, A.A., Trushin, O.S., Müller, H., and Kirchmayr, H.: Microstructure and its relaxation in FeB amorphous system simulated by moleculular dynamics. J. Non-Cryst. Solids 159, 80 (1993).CrossRefGoogle Scholar
24.Miracle, D.B.: A structural model for metallic glasses. Nat. Mater. 3, 697 (2004).CrossRefGoogle ScholarPubMed
25.Sheng, H.W., Luo, W.K., Alamgir, F.M., Bai, J.M., and Ma, E.: Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419 (2006).CrossRefGoogle ScholarPubMed
26.Zhang, S., Ichitsubo, T., Yokoyama, Y., Yamamoto, T., Matsubara, E., and Inoue, A.: Crystallization behavior and structural stability of Zr50Cu40Al10 bulk metallic glass. Mater. Trans. 50, 1340 (2009).CrossRefGoogle Scholar
27.Yamamoto, T., Yokoyama, Y., Ichitsubo, T., Kimura, H., Matsubara, E., and Inoue, A.: Precipitation of the ZrCu B2 phase in Zr50Cu50-xAlx (x = 0, 4, 6) metallic glasses by rapidly heating and cooling. J. Mater. Res. 25(4), 793 (2010).CrossRefGoogle Scholar
28.Yang, L., Xia, J.H., Wang, Q., Dong, C., Chen, L.Y., Ou, X., Liu, J.F., Jiang, J.Z., Klementiev, K., Saksl, K., Franz, H., Schneider, J.R., and Gerward, L.: Design of Cu8Zr5-based bulk metallic glasses. Appl. Phys. Lett. 88, 241913 (2006).CrossRefGoogle Scholar
29.Medvedev, N.N. and Naberukhin, Y.I.: Shape of the Delaunay simplices in dense random packings of hard and soft spheres. J. Non-Cryst. Solids 94, 402 (1987).CrossRefGoogle Scholar
30.Yang, L. and Guo, G.Q.: Preferred clusters in metallic glasses. Chin. Phys. B 12, 126101 (2010).CrossRefGoogle Scholar
31.Yang, L., Guo, G.Q., Chen, L.Y., Wei, S.H., Jiang, J.Z., and Wang, X.D.: Atomic structure in Al-doped multicomponent bulk metallic glass. Scr. Mater. 63, 879 (2010).CrossRefGoogle Scholar