Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-19T19:58:57.497Z Has data issue: false hasContentIssue false

Nano Superlattice-like Materials as Thermal Insulators for Phase-Change Random Access Memory

Published online by Cambridge University Press:  16 March 2012

D. Loke
Affiliation:
NUS Graduate School for Integrative Sciences & Engineering, 28 Medical Drive, Centre for Life Sciences #05-01, Singapore 117456. Data Storage Institute, DSI Building, 5 Engineering Drive 1, Singapore 117608.
L. P. Shi*
Affiliation:
Data Storage Institute, DSI Building, 5 Engineering Drive 1, Singapore 117608.
W. J. Wang
Affiliation:
Data Storage Institute, DSI Building, 5 Engineering Drive 1, Singapore 117608.
R. Zhao
Affiliation:
Data Storage Institute, DSI Building, 5 Engineering Drive 1, Singapore 117608.
L. T. Ng
Affiliation:
Data Storage Institute, DSI Building, 5 Engineering Drive 1, Singapore 117608.
K. G. Lim
Affiliation:
Data Storage Institute, DSI Building, 5 Engineering Drive 1, Singapore 117608.
H. X. Yang
Affiliation:
Data Storage Institute, DSI Building, 5 Engineering Drive 1, Singapore 117608.
T. C. Chong
Affiliation:
Singapore University of Technology & Design, 287 Ghim Moh Road, Singapore 279623.
Y. C. Yeo.
Affiliation:
Department of Electrical & Computer Engineering, National University of Singapore, 1 Engineering Drive 3, Singapore 117576.
*
*To whom correspondence should be addressed. Email: shi_luping@dsi.a-star.edu.sg
Get access

Abstract

Nanoscale superlattice-like (SLL) dielectric was employed to reduce the power consumption of the Phase-change random access memory (PCRAM) cells. In this study, we have simulated and found that the cells with the SLL dielectric have a higher peak temperature compared to that of the cells with the SiO2 dielectric after constant pulse activation, due to the interface scattering mechanism. Scaling of the SLL dielectric has resulted in higher peak temperatures, which can be even higher after material/structural modifications. Furthermore, the SLL dielectric has good material properties that enable the cells to have high endurance. This shows the effectiveness of the SLL dielectric for advanced memory applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lai, S., and Lowrey, T., IEDM Tech. Digest, 803 (2001).Google Scholar
2. Pirovano, A., Lacaita, A. L., Benvenuti, A., Pellizzer, F., Hudgens, S., and Bez, R., IEDM Tech. Digest, 699 (2003).Google Scholar
3. Wuttig, M., Nat. Mater. 4, 265 (2005).Google Scholar
4. Chong, T., Shi, L. P., Zhao, R., Tan, P. K., Li, J. M., Lee, H. K., and Miao, X. S., Appl. Phys. Lett. 88, 122114 (2006).Google Scholar
5. Rao, F., Song, Z., Zhong, M., Wu, L., Feng, G., Liu, B., Feng, S., and Chen, B., Jpn. J. Appl. Phys. 46, L25 (2007).Google Scholar
6. Wang, C., Zhi, J., , Song, S, Song, Z., Sun, M., and Shen, B., Electrochem. Solid-State Lett. 14, H258 (2011).Google Scholar
7. Loke, D., Shi, L. P., Wang, W. J., Zhao, R., Ng, L. T., Lim, K. G., Yang, H. X., Chong, T. C., and Yeo, Y. C., Appl. Phys. Lett. 97, 243508 (2010).Google Scholar
8. Cahill, D. G., Ford, W. K., Goodson, K. E., Mahan, G. D., Majumdar, A., Maris, H. J., Merlin, R., and Phillpot, S. R., J. Appl. Phys. 93, 793 (2003).Google Scholar
9. Tong, H., Miao, X. S., Cheng, X. M., Wang, H., Zhang, L., Sun, J. J., Tong, F., and Wang, J. H., Appl. Phys. Lett. 98, 101904 (2011).Google Scholar
10. Chiritescu, C., Cahill, D. G., Nguyen, N., Johnson, D., Bodapati, A., Ke-blinski, P., and Zschack, P., Science 315, 351 (2007).Google Scholar
11. Yao, T., Appl. Phys. Lett. 51, 1798 (1987).Google Scholar
12. Loke, D., Shi, L. P., Wang, W. J., Zhao, R., Yang, H. X., Ng, L. T., Lim, K. G., Chong, T. C., and Yeo, Y. C., Nanotechnology 22, 254019 (2011).Google Scholar