Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-19T00:39:50.025Z Has data issue: false hasContentIssue false

Powder diffraction analysis of gemstone inclusions

Published online by Cambridge University Press:  05 March 2012

Laura Leon-Reina
Affiliation:
Servicios Centrales de Investigación, Universidad de Málaga, 29071 Málaga, Spain
José M. Compana
Affiliation:
Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga, Spain
Ángeles G. De la Torre
Affiliation:
Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga, Spain
Rosa Moreno
Affiliation:
Departament de Geologia, Universitat de València, 46100 Burjassot, Valencia, Spain and Instituto de Reconocimiento Molecular y Desarrollo Tecnológico, Campus Burjassot, Valencia, Spain
Luis E. Ochando
Affiliation:
Departament de Geologia, Universitat de València, 46100 Burjassot, Valencia, Spain and Instituto de Reconocimiento Molecular y Desarrollo Tecnológico, Campus Burjassot, Valencia, Spain
Miguel A. G. Aranda*
Affiliation:
Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga, Spain
*
a)Author to whom correspondence should be addressed. Electronic mail: g_aranda@uma.es

Abstract

Gemstones are pieces of materials that once cut and polished are used as jewels or adornments. Gemstones may be single crystal (such as diamonds), polycrystalline (such as lapis lazuli), or amorphous (such as amber). In any case, gems may have inclusions that may yield a variety of optic effects. It is also important to unravel the crystal structure of the inclusion(s) in order to determine the origin of the gem and to help to understand their formation mechanism. Here, we expand the use of powder diffraction to identify crystalline inclusions in bulk gemstones highlighting Mo Kα radiation to penetrate within compact gems. Initially, rock crystal quartz with rutile needles was investigated and rutile diffraction peaks were more conspicuous in the Mo pattern than in the Cu pattern. Next, rock crystal quartz with beetle legs was characterized and the red iron oxide inclusion was identified as hematite. The study of a fake gem, glass showing aventurine effect, gave the diffraction peaks of metallic copper. Later, polycrystalline gems, moss agate, and aventurine quartz were also studied. The powder patterns of these compact gemstones could be successfully fitted using the Rietveld method. Finally, we discuss opportunities for further improvements in laboratory powder diffraction to characterize inclusions in compact gems.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boiron, M. C., Essarraj, S., Sellier, E., Cathelineau, M., Lespinasse, M., and Poty, B. (1992). “Identification of fluid inclusions in relation to their host microstructural domains in quartz by cathodoluminescence,” Geochim. Cosmochim. ActaGCACAK 56, 175185.10.1016/0016-7037(92)90125-3CrossRefGoogle Scholar
Ghisoli, C., Caucia, F., and Marinoni, L. (2010). “XRPD patterns of opals: A brief review and new results from recent studies,” Powder Diffr.PODIE2 25, 274282.10.1154/1.3478554CrossRefGoogle Scholar
Gübelin, E. and Koivula, J. I. (1986). Photoatlas of Inclusions in Gemstones (ABC, Zurich), Vol. 1.Google Scholar
Gübelin, E. and Koivula, J. I. (2005). Photoatlas of Inclusions in Gemstones (Opinio, Basel), Vol. 2.Google Scholar
Gübelin, E. and Koivula, J. I. (2008). Photoatlas of Inclusions in Gemstones (Opinio, Basel), Vol. 3.Google Scholar
Hatipoglu, M., Tuncer, Y., Kibar, R., Çetin, A., Karali, T., and Can, N. (2010). “Thermal properties of gem-quality moganite-rich blue chalcedony,” Physica B: Condensed MatterPHYBE3 405, 46274633.10.1016/j.physb.2010.08.048CrossRefGoogle Scholar
Hughes, R. W. (1997). Ruby and Sapphire (RWH, Boulder, CO), Chap. 5.Google Scholar
ICDD (2004). “Powder Diffraction File,” edited by McClune, W. F., International Centre for Diffraction Data, Newtown Square, Pennyslvania.Google Scholar
Jenkins, R. and Snyder, R. L. (1996). Introduction to X-Ray Powder Diffractometry (Wiley, New York).CrossRefGoogle Scholar
Karampelas, S., Hardy, P., and Fritsch, E. (2010). “A large hydrogen-rich diamond with a cuboid phantom cloud,” Gems. Gemol.GEGEA2 46, 6465.Google Scholar
Koivula, J. I. and Chadwick, K. M. (2008). “Scapolite with diopside inclusions,” Gems. Gemol.GEGEA2 44, 277277.Google Scholar
Kretz, R. (1983). “Symbols for rock-forming minerals,” Am. Mineral.AMMIAY 68, 277279.Google Scholar
Langford, J. I. and Louër, D. (1996). “Powder diffraction,” Rep. Prog. Phys.RPPHAG 59, 131234.10.1088/0034-4885/59/2/002CrossRefGoogle Scholar
Larson, A. C. and von Dreele, R. B. (2000). General Structure Analysis System (GSAS), Report LAUR 86-748, Los Alamos National Laboratory, Los Alamos, NM.Google Scholar
Oaki, I. and Imai, H. (2005). “The hierarchical architecture of nacre and its mimetic material,” Angew. Chem., Int. Ed.ACIEF5 44, 65716575.10.1002/anie.200500338CrossRefGoogle ScholarPubMed
Pecharsky, V. and Zavalij, P. (2008). Fundamentals of Powder Diffraction and Structural Characterization of Materials, 2nd ed. (Springer, Berlin).Google Scholar
Qiao, L., Feng, Q. -L., and Li, Z. (2007). “Special vaterite found in freshwater lackluster pearls,” Cryst. Growth Des.CGDEFU 7, 275279.10.1021/cg060309fCrossRefGoogle Scholar
Renfro, N. (2010). “Hanksite as a gem material,” Gems. Gemol.GEGEA2 46, 6061.Google Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr.JACGAR 2, 6571.10.1107/S0021889869006558CrossRefGoogle Scholar
Tagliani, S. M., Macri, M., Stellino, S., Maras, A., and Serracino, M. (2010). “Churrasco quartz’ with tourmaline and chamosite inclusions from Brazil,” Gems. Gemol.GEGEA2 46, 6363.Google Scholar
Tarling, S. E., Barnes, P., and Klinowski, J. (1988). “The structure and Si,Al distribution of the ultramarines,” Acta Crystallogr., Sect. B: Struct. Sci.ASBSDK 44, 128135.10.1107/S0108768187011698CrossRefGoogle Scholar
Toby, B. H. (2001). “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr.JACGAR 34, 210213.10.1107/S0021889801002242CrossRefGoogle Scholar
Toby, B. H. (2007). “A new approach for instruction in powder crystallography,” Powder Diffr.PODIE2 22, 8384.10.1154/1.2472366CrossRefGoogle Scholar