Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-27T10:41:37.681Z Has data issue: false hasContentIssue false

An introduction to thin film processing using high-power impulse magnetron sputtering

Published online by Cambridge University Press:  08 February 2012

Daniel Lundin*
Affiliation:
Plasma & Coatings Physics Division, IFM-Materials Physics, Linköping University, SE-581 83 Linköping, Sweden
Kostas Sarakinos
Affiliation:
Plasma & Coatings Physics Division, IFM-Materials Physics, Linköping University, SE-581 83 Linköping, Sweden
*
a)Address all correspondence to this author. e-mail: daniel.lundin@liu.se
Get access

Abstract

High-power impulse magnetron sputtering (HiPIMS) is a promising sputtering-based ionized physical vapor deposition technique and is already making its way to industrial applications. The major difference between HiPIMS and conventional magnetron sputtering processes is the mode of operation. In HiPIMS the power is applied to the magnetron (target) in unipolar pulses at a low duty factor (<10%) and low frequency (<10 kHz) leading to peak target power densities of the order of several kilowatts per square centimeter while keeping the average target power density low enough to avoid magnetron overheating and target melting. These conditions result in the generation of a highly dense plasma discharge, where a large fraction of the sputtered material is ionized and thereby providing new and added means for the synthesis of tailor-made thin films. In this review, the features distinguishing HiPIMS from other deposition methods will be addressed in detail along with how they influence the deposition conditions, such as the plasma parameters and the sputtered material, as well as the resulting thin film properties, such as microstructure, phase formation, and chemical composition. General trends will be established in conjunction to industrially relevant material systems to present this emerging technology to the interested reader.

Type
Reviews
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ohring, M.: Materials Science of Thin Films (Academic Press, San Diego, 2002).Google Scholar
2.Penning, F.M., U.S. Patent No: 2,146,025 (1939) (German Patent filed 1935).Google Scholar
3.Thornton, J.A. and Penfold, A.S.: Cylindrical magnetron sputtering in thin film processes. Thin Film Processes, edited by Vossen, J.L. and Kern, W. (Academic Press, New York, 1978).Google Scholar
4.Kouznetsov, V., Macák, K., Schneider, J.M., Helmersson, U., and Petrov, I.: A novel pulsed magnetron sputter technique utilizing very high target power densities. Surf. Coat. Tech. 122, 290 (1999).CrossRefGoogle Scholar
5.Helmersson, U., Lattemann, M., Bohlmark, J., Ehiasarian, A.P., and Gudmundsson, J.T.: Ionized physical vapor deposition (IPVD): A review of technology and applications. Thin Solid Films 513, 1 (2006).CrossRefGoogle Scholar
6.Anders, A.: Discharge physics of high power impulse magnetron sputtering. Surf. Coat. Tech. 205, S1 (2011).CrossRefGoogle Scholar
7.Bohlmark, J., Lattemann, M., Gudmundsson, J.T., Ehiasarian, A.P., Aranda Gonzalvo, Y., Brenning, N., and Helmersson, U.: The ion-energy distributions and plasma composition of a high power impulse magnetron sputtering discharge. Thin Solid Films 515, 1522 (2006).CrossRefGoogle Scholar
8.Samuelsson, M., Lundin, D., Jensen, J., Raadu, M.A., Gudmundsson, J.T., and Helmersson, U.: On the film density using high power impulse magnetron sputtering. Surf. Coat. Tech. 15, 591 (2010).CrossRefGoogle Scholar
9.Sittinger, V., Ruske, F., Werner, W., Jacobs, C., Szyszka, B., and Christie, D.: High power pulsed magnetron sputtering of transparent conducting oxides. Thin Solid Films 516, 5847 (2008).CrossRefGoogle Scholar
10.Lattemann, M., Helmersson, U., and Greene, J.E.: Fully dense, non-faceted 111-textured high power impulse magnetron sputtering TiN films grown in the absence of substrate heating and bias. Thin Solid Films 518, 5978 (2010).CrossRefGoogle Scholar
11.Konstantinidis, S., Dauchot, J.P., and Hecq, M.: Titanium oxide thin films deposited by high-power impulse magnetron sputtering. Thin Solid Films 515, 1182 (2006).CrossRefGoogle Scholar
12.Alami, J., Eklund, P., Andersson, J.M., Lattemann, M., Wallin, E., Bohlmark, J., Persson, P., and Helmersson, U.: Phase tailoring of Ta thin films by highly ionized pulsed magnetron sputtering. Thin Solid Films 515, 3434 (2007).CrossRefGoogle Scholar
13.Paulitsch, J., Mayrhofer, P.H., Mitterer, C., Münz, W-D., and Schenkel, M.: Mechanical and tribological properties of CrN coatings deposited by a simultaneous HIPIMS/UBM sputtering process, in Society of Vacuum Coaters 50th Annual Technical Conference Proceedings, April 28–May 3 (Louisville, KY, 2007), p. 150.Google Scholar
14.Ehiasarian, A.P., Wen, J.G., and Petrov, I.: Interface microstructure engineering by high power impulse magnetron sputtering for the enhancement of adhesion. J. Appl. Phys. 101, 054301 (2007).CrossRefGoogle Scholar
15.Alami, J., Persson, P.O.Å., Music, D., Gudmundsson, J.T., Bohlmark, J., and Helmersson, U.: Ion-assisted physical vapor deposition for enhanced film properties on nonflat surfaces. J. Vac. Sci. Technol. A 23, 278 (2005).CrossRefGoogle Scholar
16.Aijaz, A., Lundin, D., Larsson, P., and Helmersson, U.: Dual-magnetron open field sputtering system for sideways deposition of thin films. Surf. Coat. Tech. 204, 2165 (2010).CrossRefGoogle Scholar
17.Wallin, E., Selinder, T.I., Elfwing, M., and Helmersson, U.: Synthesis of α-Al2O3 thin films using reactive high-power impulse magnetron sputtering. Europhys. Lett. 82, 36002 (2008).CrossRefGoogle Scholar
18.Sarakinos, K., Alami, J., and Konstantinidis, S.: High power pulsed magnetron sputtering: A review on scientific and engineering state of the art. Surf. Coat. Tech. 204, 1661 (2010).CrossRefGoogle Scholar
19.Christou, C. and Barber, Z.H.: Ionization of sputtered material in a planar magnetron discharge. J. Vac. Sci. Technol. A 18, 2897 (2000).CrossRefGoogle Scholar
20.Rossnagel, S.M. and Hopwood, J.: Metal ion deposition from ionized magnetron sputtering discharge. J. Vac. Sci. Technol. B 12, 449 (1994).CrossRefGoogle Scholar
21.Konstantinidis, S., Ricard, A., Ganciu, M., Dauchot, J.P., Ranea, C., and Hecq, M.: Measurement of ionic and neutral densities in amplified magnetron discharges by pulsed absorption spectroscopy. J. Appl. Phys. 95, 2900 (2004).CrossRefGoogle Scholar
22.Nouvellon, C., Konstantinidis, S., Dauchot, J.P., Wautelet, M., Jouan, P.Y., Ricard, A., and Hecq, M.: Emission spectrometry diagnostic of sputtered titanium in magnetron amplified discharges. J. Appl. Phys. 92, 32 (2002).CrossRefGoogle Scholar
23.Johnson, C.P.: The cathodic arc plasma deposition of thin films, in Vossen, J.L. and Kern, W. (eds.): Thin Film Processes II (Academic Press, New York, 1991).Google Scholar
24.Davis, W.D. and Miller, H.C.: Analysis of the electrode products emitted by dc arcs in a vacuum ambient. J. Appl. Phys. 40, 2212 (1969).CrossRefGoogle Scholar
25.Wang, Z. and Cohen, S.A.: Hollow cathode magnetron. J. Vac. Sci. Technol. A 17, 77 (1999).CrossRefGoogle Scholar
26.Klawuhn, E., D’Couto, G.C., Ashtiani, K.A., Rymer, P., Biberger, M.A., and Levy, K.B.: Ionized physical-vapor deposition using a hollow-cathode magnetron source for advanced metallization. J. Vac. Sci. Technol. A 18, 1546 (2000).CrossRefGoogle Scholar
27.Söderström, D.: Modelling and Applications of the Hollow Cathode Plasma. Doctoral Thesis, Uppsala University, Uppsala, (2008).Google Scholar
28.Konstantinidis, S., Dauchot, J.P., Ganciu, M., Ricard, A., and Hecq, M.: Influence of pulse duration on the plasma characteristics in high-power pulsed magnetron discharges. J. Appl. Phys. 99, 013307 (2006).CrossRefGoogle Scholar
29.Lundin, D., Brenning, N., Jädernäs, D., Larsson, P., Wallin, E., Lattemann, M., Raadu, M.A., and Helmersson, U.: Transition between the discharge regimes of high power impulse magnetron sputtering and conventional direct current magnetron sputtering. Plasma Sources Sci. Technol. 18, 045008 (2009).CrossRefGoogle Scholar
30.Wallin, E. and Helmersson, U.: Hysteresis-free reactive high power impulse magnetron sputtering. Thin Solid Films 516, 6398 (2008).CrossRefGoogle Scholar
31.Alami, J., Sarakinos, K., Uslu, F., and Wuttig, M.: On the relationship between the peak target current and the morphology of chromium nitride thin films deposited by reactive high power pulsed magnetron sputtering. J. Phys. D 42, 015304 (2009).CrossRefGoogle Scholar
32.Gudmundsson, J.T., Sigurjonsson, P., Larsson, P., Lundin, D., and Helmersson, U.: On the electron energy in the high power impulse magnetron sputtering discharge. J. Appl. Phys. 105, 123302 (2009).CrossRefGoogle Scholar
33.Bohlmark, J., Gudmundsson, J.T., Alami, J., Lattemann, M., and Helmersson, U.: Spatial electron density distribution in a high-power pulsed magnetron discharge. IEEE Trans. Plasma Sci. 33, 346 (2005).CrossRefGoogle Scholar
34.Gudmundsson, J.T.: The high power impulse magnetron sputtering discharge as an ionized physical vapor deposition tool. Vacuum 84, 1360 (2010).CrossRefGoogle Scholar
35.Vlcek, J., Kudlacek, P., Burcalova, K., and Musil, J.: Ion flux characteristics in high-power pulsed magnetron sputtering discharges. Europhys. Lett. 77, 45002 (2007).CrossRefGoogle Scholar
36.Bohlmark, J., Alami, J., Christou, C., Ehiasarian, A.P., and Helmersson, U.: Ionization of sputtered metals in high power pulsed magnetron sputtering. J. Vac. Sci. Technol. A 23, 18 (2005).CrossRefGoogle Scholar
37.Macák, K., Kouznetsov, V., Schneider, J., Helmersson, U., and Petrov, I.: Ionized sputter deposition using an extremely high plasma density pulsed magnetron discharge. J. Vac. Sci. Technol. A 18, 1533 (2000).CrossRefGoogle Scholar
38.DeKoven, B.M., Ward, P.R., Weiss, R.E., Christie, D.J., Scholl, R.A., Sproul, W.D., Tomasel, F., and Anders, A.: Carbon thin film deposition using high power pulsed magnetron sputtering, in Society of Vacuum Coaters 46th Annual Technical Conference Proceedings, May 3–8 (San Francisco, CA, 2003), p. 158.Google Scholar
39.Hopwood, J.A.: Plasma Physics. Thin Films: Ionized Physical Vapor Deposition, edited by Hopwood, J.A. (Academic Press, San Diego, 2000).Google Scholar
40.Rossnagel, S.M. and Hopwood, J.: Magnetron sputter deposition with high levels of metal ionization. Appl. Phys. Lett. 63, 3285 (1993).CrossRefGoogle Scholar
41.Vlcek, J., Kudlacek, P., Burcalova, K., and Musil, J.: High-power pulsed sputtering using a magnetron with enhanced plasma confinement. J. Vac. Sci. Technol. A 25, 42 (2007).CrossRefGoogle Scholar
42.Burcalova, K., Hecimovic, A., and Ehiasarian, A.P.: Ion-energy distributions and efficiency of sputtering process in HIPIMS system. J. Phys. D 41, 115306 (2008).CrossRefGoogle Scholar
43.Anders, A., Andersson, J., and Ehiasarian, A.: High power impulse magnetron sputtering: Current-voltage-time characteristics indicate the onset of sustained self-sputtering. J. Appl. Phys. 102, 113303 (2007).CrossRefGoogle Scholar
44.Andersson, J., Ehiasarian, A.P., and Anders, A.: Observation of Ti4+ ions in a high power impulse magnetron sputtering plasma. Appl. Phys. Lett. 93, 071504 (2008).CrossRefGoogle Scholar
45.Rosén, J., Anders, A., Mráz, S., and Schneider, J.M.: Charge-state-resolved ion energy distributions of aluminum vacuum arcs in the absence and presence of a magnetic field. J. Appl. Phys. 97, 103306 (2005).CrossRefGoogle Scholar
46.Anders, A.: Self-sputtering runaway in high power impulse magnetron sputtering: The role of secondary electrons and multiply charged metal ions. Appl. Phys. Lett. 92, 201501 (2008).CrossRefGoogle Scholar
47.Andersson, J. and Anders, A.: Gasless sputtering: Opportunities for ultraclean metallization, coatings in space, and propulsion. Appl. Phys. Lett. 92, 221503 (2008).CrossRefGoogle Scholar
48.Wei, L.I., Zhong-Quan, M.A., Ye, W., and De-Ming, W.: Optimization of energy scope for titanium nitride films grown by ion beam-assisted deposition. Chin. Phys. Lett. 23, 178 (2006).CrossRefGoogle Scholar
49.Lundin, D., Larsson, P., Wallin, E., Lattemann, M., Brenning, N., and Helmersson, U.: Cross-field ion transport during high power impulse magnetron sputtering. Plasma Sources Sci. Technol. 17, 035021 (2008).CrossRefGoogle Scholar
50.Eriksson, F., Ghafoor, N., Schäfers, F., Gullikson, E.M., and Birch, J.: Interface engineering of short-period Ni/V multilayer x-ray mirrors. Thin Solid Films 500, 84 (2006).CrossRefGoogle Scholar
51.Hecimovic, A. and Ehiasarian, A.P.: Time evolution of ion energies in HIPIMS of chromium plasma discharge. J. Phys. D 42, 135209 (2009).CrossRefGoogle Scholar
52.Hecimovic, A. and Ehiasarian, A.P.: Temporal evolution of the ion fluxes for various elements in HIPIMS plasma discharge. IEEE Trans. Plasma Sci. 39, 1154 (2011).CrossRefGoogle Scholar
53.Leroy, W.P., Konstantinidis, S., Mahieu, S., Snyders, R., and Depla, D.: Angular-resolved energy flux measurements of a dc- and HIPIMS-powered rotating cylindrical magnetron in reactive and non-reactive atmosphere. J. Phys. D 44, 115201 (2011).CrossRefGoogle Scholar
54.Lundin, D., Stahl, M., Kersten, H., and Helmersson, U.: Energy flux measurements in high power impulse magnetron sputtering. J. Phys. D 42, 185202 (2009).CrossRefGoogle Scholar
55.West, G., Kelly, P., Barker, P., Mishra, A., and Bradley, J.: Measurements of deposition rate and substrate heating in a HiPIMS discharge. Plasma Processes Polym. 6, S543 (2009).CrossRefGoogle Scholar
56.Hoffman, D.W.: A sputtering wind. J. Vac. Sci. Technol. A 3, 561 (1985).CrossRefGoogle Scholar
57.Rossnagel, S.M.: Gas density reduction effects in magnetrons. J. Vac. Sci. Technol. A 6, 19 (1988).CrossRefGoogle Scholar
58.Palmero, A., Rudolph, H., and Habraken, F.H.P.M.: Gas heating in plasma-assisted sputter deposition. Appl. Phys. Lett. 87, 071501 (2005).CrossRefGoogle Scholar
59.Palmero, A., Rudolph, H., and Habraken, F.H.P.M.: Study of the gas rarefaction phenomenon in a magnetron sputtering system. Thin Solid Films 515, 631 (2006).CrossRefGoogle Scholar
60.Kolev, I. and Bogaerts, A.: Calculation of gas heating in a dc sputter magnetron. J. Appl. Phys. 104, 093301 (2008).CrossRefGoogle Scholar
61.Kadlec, S.: Simulation of neutral particle flow during high power magnetron impulse. Plasma Processes Polym. 4, S419 (2007).CrossRefGoogle Scholar
62.Helmersson, U., Lattemann, M., Alami, J., Bohlmark, J., Ehiasarian, A.P., and Gudmundsson, J.T.: High power impulse magnetron sputtering discharges and thin film growth: A brief review, in Society of Vacuum Coaters 48th Annual Technical Conference Proceedings, April 23–28 (Denver, CO, 2005), p. 458.Google Scholar
63.Christie, D.J.: Target material pathways model for high power pulsed magnetron sputtering. J. Vac. Sci. Technol. A 23, 330 (2005).CrossRefGoogle Scholar
64.Poolcharuansin, P. and Bradley, J.W.: Short- and long-term plasma phenomena in a HiPIMS discharge. Plasma Sources Sci. Technol. 19, 025010 (2010).CrossRefGoogle Scholar
65.Konstantinidis, S., Dauchot, J.P., Ganciu, M., and Hecq, M.: Transport of ionized metal atoms in high-power pulsed magnetron discharges assisted by inductively coupled plasma. Appl. Phys. Lett. 88, 021501 (2006).CrossRefGoogle Scholar
66.Bugaev, S.P., Koval, N.N., Sochugov, N.S., and Zakharov, A.N.: Investigation of a high-current pulsed magnetron discharge initiated in the low-pressure diffuse arc plasma, in Proceedings of the XVIIth International Symposium on Discharges and Electrical Insulation in Vacuum, July 21–26 (Berkeley, CA, 1996), p. 1074.Google Scholar
67.Bohlmark, J., Östbye, M., Lattemann, M., Ljungcrantz, H., Rosell, T., and Helmersson, U.: Guiding the deposition flux in an ionized magnetron discharge. Thin Solid Films 515, 1928 (2006).CrossRefGoogle Scholar
68.Mishra, A., Kelly, P.J., and Bradley, J.W.: The evolution of the plasma potential in a HiPIMS discharge and its relationship to deposition rate. Plasma Sources Sci. Technol. 19, 045014 (2010).CrossRefGoogle Scholar
69.Emmerlich, J., Mráz, S., Snyders, R., Jiang, K., and Schneider, J.M.: The physical reason for the apparently low deposition rate during high power pulsed magnetron sputtering. Vacuum 82, 867 (2008).CrossRefGoogle Scholar
70.Brenning, N., Merlino, R.L., Lundin, D., Raadu, M.A., and Helmersson, U.: Faster-than-Bohm Cross-B Electron Transport in Strongly Pulsed Plasmas. Phys. Rev. Lett. 103, 225003 (2009).CrossRefGoogle ScholarPubMed
71.Lundin, D., Helmersson, U., Kirkpatrick, S., Rohde, S., and Brenning, N.: Anomalous electron transport in high power impulse magnetron sputtering. Plasma Sources Sci. Technol. 17, 025007 (2008).CrossRefGoogle Scholar
72.Brenning, N., Huo, C., Lundin, D., Raadu, M.A., Vitelaru, C., Stancu, G.D., Minea, T., and Helmersson, U.: Understanding deposition rate loss in high power impulse magnetron sputtering. Plasma Sources Sci. Technol. (2011, in press).Google Scholar
73.Aiempanakit, M., Kubart, T., Larssron, P., Sarakinos, K., Jensen, J., and Helmersson, U.: Hysteresis and process stability in reactive high power impulse magnetron sputtering of metal oxides. Thin Solid Films 519, 7779 (2011).CrossRefGoogle Scholar
74.Lazar, J., Vlcek, J., and Rezek, J.: Ion flux characteristics and efficiency of the deposition processes in high power impulse magnetron sputtering of zirconium. J. Appl. Phys. 108, 063307 (2010).CrossRefGoogle Scholar
75.Horwat, D. and Anders, A.: Compression and strong rarefaction in high power impulse magnetron sputtering discharges. J. Appl. Phys. 108, 123306 (2010).CrossRefGoogle Scholar
76.Lin, J., Moore, J.J., Sproul, W.D., Mishra, B., Rees, J.A., Wu, Z., Chistyakov, R., and Abraham, B.: Ion energy and mass distributions of the plasma during modulated pulse power magnetron sputtering. Surf. Coat. Tech. 203, 3676 (2009).CrossRefGoogle Scholar
77.Meng, L., Cloud, A.N., Jung, S., and Ruzic, D.N.: Study of plasma dynamics in a modulated pulsed power magnetron discharge using a time-resolved Langmuir probe. J. Vac. Sci. Technol. A 29, 011024 (2011).CrossRefGoogle Scholar
78.Hála, M., Capek, J., Zabeida, O., Klemberg-Sapieha, J.E., and Martinu, L.: Pulse management in high power pulsed magnetron sputtering process: I. Effect on the characteristics of Ar discharge and Nb coatings. J. Phys. D (2011, in press).Google Scholar
79.Ross, A.E., Sangines, R., Treverrow, B., Bilek, M.M.M., and McKenzie, D.R.: Optimizing efficiency of Ti ionized deposition in HIPIMS. Plasma Sources Sci. Technol. 20, 035021 (2011).CrossRefGoogle Scholar
80.Berg, S. and Nyberg, T.: Fundamental understanding and modeling of reactive sputtering processes. Thin Solid Films 476, 215 (2005).CrossRefGoogle Scholar
81.Depla, D. and De Gryse, R.: Target poisoning during reactive magnetron sputtering: Part I: The influence of ion implantation. Surf. Coat. Tech. 183, 184 (2004).CrossRefGoogle Scholar
82.Severin, D., Kappertz, O., Kubart, T., Nyberg, T., Berg, S., Pflug, A., Siemers, M., and Wuttig, M.: Process stabilization and increase of the deposition rate in reactive sputtering of metal oxides and oxynitrides. Appl. Phys. Lett. 88, 161504 (2006).CrossRefGoogle Scholar
83.Sproul, W.D., Graham, M.E., Wong, M.S., Lopez, S., Li, D., and Scholl, R.A.: Reactive direct current magnetron sputtering of aluminum oxide coatings. J. Vac. Sci. Technol. A 13, 1188 (1995).CrossRefGoogle Scholar
84.Sarakinos, K., Alami, J., Klever, C., and Wuttig, M.: Process stabilization and enhancement of deposition rate during reactive high power pulsed magnetron sputtering of zirconium oxide. Surf. Coat. Tech. 202, 5033 (2008).CrossRefGoogle Scholar
85.Depla, D. and De Gryse, R.: Cross section for removing chemisorbed oxygen from an aluminum target by sputtering. J. Vac. Sci. Technol. A 20, 521 (2002).CrossRefGoogle Scholar
86.Clarenbach, B., Lorenz, B., Krämer, M., and Sadeghi, N.: Time-dependent gas density and temperature measurements in pulsed helicon discharges in argon. Plasma Sources Sci. Technol. 12, 345 (2003).CrossRefGoogle Scholar
87.Sarakinos, K., Alami, J., and Wuttig, M.: Process characteristics and film properties upon growth of TiOx films by high power pulsed magnetron sputtering. J Phys. D 40, 2108 (2008).CrossRefGoogle Scholar
88.Kubart, T., Aiempanakit, M., Andersson, J., Nyberg, T., Berg, S., and Helmersson, U.: Studies of hysteresis effect in reactive HiPIMS deposition of oxides. Surf. Coat. Tech. 205, S303 (2011).CrossRefGoogle Scholar
89.Mattox, D.M.: Handbook of Physical Vapor Deposition (PVD) Processing (Noyes Publications, Westwood, 1998).Google Scholar
90.Auciello, O. and Kelly, R.: Ion Bombardment Modification of Surfaces: Fundamentals and Applications (Elsevier, Amsterdam, 1984).Google Scholar
91.Petrov, I., Barna, P.B., Hultman, L., and Greene, J.E.: Microstructural evolution during film growth. J. Vac. Sci. Technol. A 21, S117 (2003).CrossRefGoogle Scholar
92.Dalla Torre, J., Gilmer, G.H., Windt, D.L., Kalyanaraman, R., Baumann, F.H., O’Sullivan, P.L., Sapjeta, J., Díaz de la Rubia, T., and Djafari Rouhani, M.: Microstructure of thin tantalum films sputtered onto inclined substrates: Experiments and atomistic simulations. J. Appl. Phys. 94, 263 (2003).CrossRefGoogle Scholar
93.Ensiger, W.: Low energy ion assist during deposition—an effective tool for controlling thin film microstructure. Nucl. Instrum. Methods Phys. Res. B 127128, 796 (1997).CrossRefGoogle Scholar
94.Tellier, C.R. and Tosser, A.J.: Size Effects in Thin Films (Elsevier, Amsterdam, 1982).Google Scholar
95.Munoz, R.C., Finger, R., Arenas, C., Kremer, G., and Moraga, L.: Surface-induced resistivity of thin metallic films bounded by a rough fractal surface. Phys. Rev. B 66, 205401 (2002).CrossRefGoogle Scholar
96.Weis, H., Müggenburg, T., Grosse, P., Herlitze, L., Friedrich, I., and Wuttig, M.: Advanced characterization tools for thin films in low-E systems. Thin Solid Films. 351, 184 (1999).CrossRefGoogle Scholar
97.Siemroth, P. and Schülke, T.: Copper metallization in microelectronics using filtered vacuum arc deposition—principles and technological development. Surf. Coat. Tech. 133134, 106 (2000).CrossRefGoogle Scholar
98.Alami, J., Bolz, S., and Sarakinos, K.: High power pulsed magnetron sputtering: Fundamentals and applications. J. Alloy. Comp. 483, 530 (2009).CrossRefGoogle Scholar
99.Schuelke, T., Witke, T., Scheibe, H.J., Siemroth, P., Schultrich, B., Zimmer, O., and Vetter, J.: Comparison of DC and AC arc thin film deposition techniques. Surf. Coat. Tech. 120121, 226 (1999).CrossRefGoogle Scholar
100.Berisch, R.: Sputtering by Particle Bombardment I (Springer, Berlin, 1982).Google Scholar
101.Chistyakov, R., Abraham, B., Sproul, W.D., Moore, J., and Lin, J.: Modulated pulse power technology and deposition for protective and tribological coatings, in Society of Vacuum Coaters 50th Annual Technical Conference Proceedings, April 28–May 3 (Louisville, KY, 2007), p. 139.Google Scholar
102.Michely, T. and Krug, J.: Islands Mounts and Atoms (Springer, Berlin, 2004).CrossRefGoogle Scholar
103.Petrov, I., Adibi, F., Greene, J.E., Hultman, L., and Sundgren, J.E.: Average energy deposited per atom: A universal parameter for describing ion-assisted film growth? Appl. Phys. Lett. 63, 36 (1993).CrossRefGoogle Scholar
104.Janssen, G.C.A.M. and Kamminga, J.D.: Stress in hard metal films. Appl. Phys. Lett. 85, 3086 (2004).CrossRefGoogle Scholar
105.Pauleau, Y.: Generation and evolution of residual stresses in physical vapour-deposited thin films. Vacuum 61, 175 (2001).CrossRefGoogle Scholar
106.Windischmann, H.: Intrinsic stress in sputter-deposited thin-films. Crit. Rev. Solid State Mater. Sci. 17, 547 (1992).CrossRefGoogle Scholar
107.Davis, C.A.: A simple model for the formation of compressive stress in thin films by ion bombardment. Thin Solid Films 226, 30 (1993).CrossRefGoogle Scholar
108.Clevenger, L.A., Mutscheller, A., Harper, J.M.E., Cabral, C., and Barmak, K.: The relationship between deposition conditions, the beta to alpha phase transformation, and stress relaxation in tantalum thin films. J. Appl. Phys. 72, 4918 (1992).CrossRefGoogle Scholar
109.Face, D.W. and Prober, D.E.: Nucleation of body-centered-cubic tantalum films with a thin niobium underlayer. J. Vac. Sci. Technol. A 5, 3408 (1987).CrossRefGoogle Scholar
110.Alami, J., Eklund, P., Emmerlich, J., Wilhelmsson, O., Jansson, U., Högberg, H., Hultman, L., and Helmersson, U.: High-power impulse magnetron sputtering of Ti–Si–C thin films from a Ti3SiC2 compound target. Thin Solid Films 515, 1731 (2006).CrossRefGoogle Scholar
111.Barsoum, M.W.: TheMn+1AXn Phases: A new class of solids, thermodynamically stable nanolaminates. Prog. Solid State Chem. 28, 201 (2000).CrossRefGoogle Scholar
112.Eklund, P., Beckers, M., Jansson, U., Högberg, H., and Hultman, L.: The Mn+1AXn phases: Materials science and thin-film processing. Thin Solid Films 518, 1851 (2010).CrossRefGoogle Scholar
113.Alami, J., Sarakinos, K., Uslu, F., Klever, C., Dukwen, J., and Wuttig, M.: On the phase formation of titanium oxide films grown by reactive high power pulsed magnetron sputtering. J. Phys. D 42, 115204 (2009).CrossRefGoogle Scholar
114.Stranak, V., Quaas, M., Wulff, H., Hubicka, Z., Wrehde, S., Tichy, M., and Hippler, R.: Formation of TiOx films produced by high-power pulsed magnetron sputtering. J. Phys. D 41, 055202 (2008).CrossRefGoogle Scholar
115.Aiempanakit, M., Helmersson, U., Aijaz, A., Larsson, P., Magnusson, R., Jensen, J., and Kubart, T.: Effect of peak power in reactive high power impulse magnetron sputtering of titanium dioxide. Surf. Coat. Tech. 205, 4828 (2011).CrossRefGoogle Scholar
116.Bandorf, R., Vergöhl, M., Giesel, P., Wallendorf, T., and Mark, G.: Investigation of HPPMS titania thin films prepared by unipolar, DC-superimposed and bipolar sputtering, in Society of Vacuum Coaters 50th Annual Technical Conference Proceedings, April 28–May 3 (Louisville, KY, 2007), p. 160.Google Scholar
117.Wiggins, M.D., Nelson, M.C., and Aita, C.R.: Phase development in sputter deposited titanium dioxide. J. Vac. Sci. Technol. A 14, 772 (1996).CrossRefGoogle Scholar
118.Zhou, W., Zhong, X.X., Wu, X.C., Yuan, L.Q., Shu, Q.W., Li, W., and Xia, Y.X.: Low-temperature deposition of nanocrystalline TiO2 films: Enhancement of nanocrystal formation by energetic particle bombardment. J. Phys D 40, 219 (2007).CrossRefGoogle Scholar
119.Barna, P.B. and Adamik, M.: Fundamental structure forming phenomena of polycrystalline films and the structure zone models. Thin Solid Films 317, 27 (1998).CrossRefGoogle Scholar
120.Koehler, J.S.: Attempt to design a strong solid. Phys. Rev. B 2, 547 (1970).CrossRefGoogle Scholar
121.van Attekum, P.M., Woerlee, P.H., Verkade, G.C., and Hoeben, A.A.: Influence of grain boundaries and surface Debye temperature on the electrical resistance of thin gold films. Phys. Rev. B 29, 645 (1984).CrossRefGoogle Scholar
122.Anders, A.: A structure zone diagram including plasma-based deposition and ion etching. Thin Solid Films 518, 4087 (2010).CrossRefGoogle Scholar
123.Greczynski, G., Jensen, J., Böhlmark, J., and Hultman, L.: Microstructure control of CrNx films during high power impulse magnetron sputtering. Surf. Coat. Tech. 205, 118 (2010).CrossRefGoogle Scholar
124.Ehiasarian, A.P., Hovsepian, P.E., Hultman, L., and Helmersson, U.: Comparison of microstructure and mechanical properties of chromium nitride-based coatings deposited by high power impulse magnetron sputtering and by the combined steered cathodic arc/unbalanced magnetron technique. Thin Solid Films 457, 270 (2004).CrossRefGoogle Scholar
125.Ehiasarian, A.P., Münz, W-D., Hultman, L., Helmersson, U., and Petrov, I.: High power pulsed magnetron sputtered CrNx films. Surf. Coat. Tech. 163164, 267 (2003).CrossRefGoogle Scholar
126.Vetter, J., Michler, T., and Steuernagel, H.: Hard coatings on thermochemically pretreated soft steels: Application potential for ball valves. Surf. Coat. Tech. 111, 210 (1999).CrossRefGoogle Scholar