Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-26T20:48:54.501Z Has data issue: false hasContentIssue false

Organic resistive nonvolatile memory materials

Published online by Cambridge University Press:  17 February 2012

Takhee Lee
Affiliation:
Department of Physics and Astronomy, Seoul National University, Korea; tlee@snu.ac.kr
Yong Chen
Affiliation:
University of California, Los Angeles, USA; yongchen@seas.ucla.edu
Get access

Abstract

Resistive memory devices based on organic materials that can be configured to two or more stable resistance states have been extensively explored as information storage media due to their advantages, which include simple device structures, low fabrication costs, and flexibility. Various organic-based materials such as small molecules, polymers, and composite materials have been observed to show bistability. This review provides a general summary about the materials, structures, characteristics, and mechanisms of organic resistive memory devices. Several critical strategies for device fabrication, performance enhancement, and integrated circuit architectures are also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Yang, Y., Ouyang, J., Ma, L., Tseng, R.J.H., Chu, C.W., Adv. Funct. Mat. 16, 1001 (2006).Google Scholar
2.Scott, J.C., Bozano, L.D., Adv. Mater. 19, 1452 (2007).Google Scholar
3.Ling, Q.-D., Liaw, D.-J., Zhu, C., Chan, D. S.-H., Kang, E.-T., Neoh, K.-G., Prog. Polym. Sci. 33, 917 (2008).Google Scholar
4.Ouyang, J., Chu, C.-W., Szmanda, C.R., Ma, L., Yang, Y., Nat. Mater. 3, 918 (2004).Google Scholar
5.Mukherjee, B., Pal, A.J., Org. Electron. 7, 249 (2006).Google Scholar
6.Lin, J., Ma, D., Org. Electron. 10, 275 (2009).Google Scholar
7.Chu, C.W., Ouyang, J., Tseng, J.H., Yang, Y., Adv. Mater. 17, 1440 (2005).Google Scholar
8.Lai, P.Y., Chen, J.S., Appl. Phys. Lett. 93, 153305 (2008).Google Scholar
9.Cho, B.-O., Yasue, T., Yoon, H., Lee, M.-S., Yeo, I.-S., Chung, U.I., Moon, J.-T., Ryu, B.-I., IEEE Int. Electron Devices Meeting (2006); doi:10.1109/IEDM.2006.346729.Google Scholar
10.Liu, G., Ling, Q.-D., Kang, E.-T., Neoh, K.-G., Liaw, D.-J., Chang, F.-C., Zhu, C.-X., Chan, D.S.-H., J. Appl. Phys. 102, 024502 (2007).Google Scholar
11.Liu, G., Ling, Q.-D., Teo, E.Y.H., Zhu, C.-X., Chan, D.S.-H., Neoh, K.-G., Kang, E.-T., ACS Nano 3, 1929 (2009).Google Scholar
12.Bozano, L.D., Kean, B.W., Beinhoff, M., Carter, K.R., Rice, P.M., Scott, J.C., Adv. Funct. Mat. 15, 1933 (2005).Google Scholar
13.Kim, T.-W., Oh, S.-H., Choi, H., Wang, G., Hwang, H., Kim, D.-Y., Lee, T., Appl. Phys. Lett. 92, 253308 (2008).Google Scholar
14.Lin, H.-T., Pei, Z., Chan, Y.-J., IEEE Electron Device Lett. 28, 569 (2007).Google Scholar
15.Chen, J.-R., Lin, H.-T., Hwang, G.-W., Chan, Y.-J., Li, P.-W., Nanotechnology 20, 255706 (2009).Google Scholar
16.Asadi, K., de Leeuw, D.M., de Boer, B., Blom, P.W.M., Nat. Mater. 7, 547 (2008).Google Scholar
17.Donhauser, Z.J., Mantooth, B.A., Kelly, K.F., Bumm, L.A., Monnell, J.D., Stapleton, J.J., Price, D.W., Rawlett, A.M., Allara, D.L., Tour, J.M., Weiss, P.S., Science 292, 2303 (2001).Google Scholar
18.Peng, G., Yuan-Wei, D., Xin, J., Yin-Xiang, L., Wei, X., IEEE Electron Device Lett. 28, 572 (2007).Google Scholar
19.Lau, C.N., Stewart, D.R., Williams, R.S., Bockrath, M., Nano Lett. 4, 569 (2004).Google Scholar
20.Das, B.C., Pal, A.J., Org. Electron. 9, 39 (2008).Google Scholar
21.Carchano, H., Lacoste, R., Segui, Y., Appl. Phys. Lett. 19, 414 (1971).Google Scholar
22.Henisch, H.K., Smith, W.R., Appl. Phys. Lett. 24, 589 (1974).Google Scholar
23.Lim, S.L., Ling, Q., Teo, E.Y.H., Zhu, C.X., Chan, D.S.H., Kang, E.T., Neoh, K.G., Chem. Mater. 19, 5148 (2007).Google Scholar
24.Kim, T.-W., Oh, S.-H., Choi, H., Wang, G., Hwang, H., Kim, D.-Y., Lee, T., IEEE Electron Device Lett. 29, 852 (2008).Google Scholar
25.Majumdar, H.S., Bandyopadhyay, A., Bolognesi, A., Pal, A.J., J. Appl. Phys. 91, 2433 (2002).Google Scholar
26.Sadaoka, Y., Sakai, Y., J. Chem. Soc., Faraday Trans. 2 72, 1911 (1976).Google Scholar
27.Kim, S.H., Yook, K.S., Jang, J., Lee, J.Y., Synth. Met. 158, 861 (2008).Google Scholar
28.Laiho, A., Majumdar, H.S., Baral, J.K., Jansson, F., Osterbacka, R., Ikkala, O., Appl. Phys. Lett. 93, 203309 (2008).Google Scholar
29.Li, F., Kim, T.W., Dong, W., Kim, Y.-H., Appl. Phys. Lett. 92, 011906 (2008).Google Scholar
30.Li, F., Son, D.-I., Seo, S.-M., Cha, H.-M., Kim, H.-J., Kim, B.-J., Jung, J.H., Kim, T.W., Appl. Phys. Lett. 91, 122111 (2007).Google Scholar
31.Simon, D.T., Griffo, M.S., DiPietro, R.A., Swanson, S.A., Carter, S.A., Appl. Phys. Lett. 89, 133510 (2006).Google Scholar
32.Verbakel, F., Meskers, S.C.J., Janssen, R.A.J., Chem. Mater. 18, 2707 (2006).Google Scholar
33.Song, Y., Ling, Q.D., Lim, S.L., Teo, E.Y.H., Tan, Y.P., Li, L., Kang, E.T., Chan, D.S.H., Zhu, C., IEEE Electron Device Lett. 28, 107 (2007).Google Scholar
34.Paul, S., Kanwal, A., Chhowalla, M., Nanotechnology 17, 145 (2006).Google Scholar
35.Son, D.-I., Kim, J.-H., Park, D.-H., Choi, W.K., Li, F., Ham, J.H., Kim, T.W., Nanotechnology 19, 055204 (2008).Google Scholar
36.Bandyopadhyay, A., Pal, A.J., Appl. Phys. Lett. 84, 999 (2004).Google Scholar
37.Cho, B., Kim, T.-W., Choe, M., Wang, G., Song, S., Lee, T., Org. Electron. 10, 473 (2009).Google Scholar
38.Cho, B., Kim, T.-W., Song, S., Ji, Y., Jo, M., Hwang, H., Jung, G.-Y., Lee, T., Adv. Mater. 22, 1228 (2010).Google Scholar
39.Lee, M.J., Park, Y., Suh, D.S., Lee, E.H., Seo, S., Kim, D.C., Jung, R., Kang, B.S., Ahn, S.E., Lee, C.B., Seo, D.H., Cha, Y.K., Yoo, I.K., Kim, J.S., Park, B.H., Adv. Mater. 19, 3919 (2007).Google Scholar
40.Lin, H.-T., Pei, Z., Chen, J.-R., Chan, Y.-J., IEEE Electron Device Lett. 30, 18 (2009).Google Scholar
41.Baek, I.G., Kim, D.C., Lee, M.J., Kim, H.J., Yim, E.K., Lee, M.S., Lee, J.E., Ahn, S.E., Seo, S., Lee, J.H., Park, J.C., Cha, Y.K., Park, S.O., Kim, H.S., Yoo, I.K., Chung, U.I., Moon, J.T., Ryu, B.I., IEEE Int. Electron Devices Meeting (2005), doi:10.1109/IEDM.2005.1609462.Google Scholar
42.Nalwa, H.S., Ferroelectric Polymers: Chemistry, Physics, and Applications (Marcel Dekker, New York, 1995).Google Scholar
43.Dearnaley, G., Morgan, D.V., Stoneham, A.M., J. Non-Cryst. Solids 4, 593 (1970).Google Scholar
44.Dearnaley, G., Stoneham, A.M., Morgan, D.V., Rep. Prog. Phys. 33, 1129 (1970).Google Scholar
45.Pender, L.F., Fleming, R.J., J. Appl. Phys. 46, 3426 (1975).Google Scholar
46.Segui, Y., Ai, B., Carchano, H., J. Appl. Phys. 47, 140 (1976).Google Scholar
47.Hwang, W., Kao, K.C., J. Chem. Phys. 60, 3845 (1974).Google Scholar
48.Joo, W.-J., Choi, T.-L., Lee, K.-H., Chung, Y., J. Phys. Chem. B 111, 7756 (2007).Google Scholar
49.Sivaramakrishnan, S., Chia, P.-J., Yeo, Y.-C., Chua, L.-L., Ho, P.K.H., Nat. Mater. 6, 149 (2007).Google Scholar
50.Carbone, A., Kotowska, B.K., Kotowski, D., Phys. Rev. Lett. 95, 236601 (2005).Google Scholar
51.Mark, P., Helfrich, W., J. Appl. Phys. 33, 205 (1962).Google Scholar
52.Das, S., Pal, A.J., Appl. Phys. Lett. 76, 1770 (2000).Google Scholar
53.Simmons, J.G., Verderber, R.R., Proc. R. Soc. London, Ser. A 301, 77 (1967).Google Scholar
54.Reddy, V.S., Karak, S., Dhar, A., Appl. Phys. Lett. 94, 173304 (2009).Google Scholar
55.Park, J.-G., Nam, W.-S., Seo, S.-H., Kim, Y.-G., Oh, Y.-H., Lee, G.-S., Paik, U.-G., Nano Lett. 9, 1713 (2009).Google Scholar
56.Potember, R.S., Poehler, T.O., Cowan, D.O., Appl. Phys. Lett. 34, 405 (1979).Google Scholar
57.Kamitsos, E.I., Tzinis, C.H., Risen, W.M., Solid State Commun. 42, 561 (1982).Google Scholar
58.Kronemeijer, A.J., Akkerman, H.B., Kudernac, T., Wees, B.J.V., Feringa, B.L., Blom, P.W.M., Boer, B.D., Adv. Mater. 20, 1467 (2008).Google Scholar
59.Teo, E.Y.H., Ling, Q.D., Song, Y., Tan, Y.P., Wang, W., Kang, E.T., Chan, D.S.H., Zhu, C., Org. Electron. 7, 173 (2006).Google Scholar
60.Smits, J.H.A., Meskers, S.C.J., Janssen, R.A.J., Marsman, A.W., de Leeuw, D.M., Adv. Mater. 17, 1169 (2005).Google Scholar
61.Kim, T.-W., Lee, K., Oh, S.-H., Wang, G., Kim, D.-Y., Jung, G.-Y., Lee, T., Nanotechnology 19, 405201 (2008).Google Scholar
62.Kim, T.-W., Choi, H., Oh, S.-H., Jo, M., Wang, G., Cho, B., Kim, D.-Y., Hwang, H., Lee, T., Nanotechnology 20, 025201 (2009).Google Scholar
63.Kim, T.-W., Choi, H., Oh, S.-H., Wang, G., Kim, D.-Y., Hwang, H., Lee, T., Adv. Mater. 21, 2497 (2009).Google Scholar
64.Kinoshita, K., Tsunoda, K., Sato, Y., Noshiro, H., Yagaki, S., Aoki, M., Sugiyama, Y., Appl. Phys. Lett. 93, 033506 (2008).Google Scholar
65.Scott, J.C., Science 304, 62 (2004).Google Scholar
66.International Technology Roadmap For Semiconductors (2007). Emerging research devices. (Semiconductor Industry Association, International Sematech, Austin, TX 2007).Google Scholar
67.Möller, S., Perlov, C., Jackson, W., Taussig, C., Forrest, S.R., Nature 426, 166 (2003).Google Scholar
68.Teo, E.Y.H., Zhang, C., Lim, S.L., Kang, E.-T., Chan, D.S.H., Zhu, C., IEEE Electron Device Lett. 30, 487 (2009).Google Scholar
69.Ahn, S.-E., Kang, B.S., Kim, K.H., Lee, M.-J., Lee, C.B., , S.G., Kim, C.J., Park, Y., IEEE Electron Device Lett. 30, 550 (2009).Google Scholar
70.Lee, M.-J., Kim, S.I., Lee, C.B., Yin, H., Ahn, S.-E., Kang, B.S., Kim, K.H., Park, J.C., Kim, C.J., Song, I., Kim, S.W., Stefanovich, G., Lee, J.H., Chung, S.J., Kim, Y.H., Park, Y., Adv. Funct. Mater. 19, 1587 (2009).Google Scholar
71.Asadi, K., Li, M., Stingelin, N., Blom, P.W.M., de Leeuw, D.M., Appl. Phys. Lett. 97, 193308 (2010).Google Scholar
72.Jeong, H.Y., Kim, Y.I., Lee, J.Y., Choi, S.-Y., Nanotechnology 21, 115203 (2010).Google Scholar
73.Song, S., Cho, B., Kim, T.-W., Ji, Y., Jo, M., Wang, G., Choe, M., Kahng, Y.H., Hwang, H., Lee, T., Adv. Mater. 22, 5048 (2010).Google Scholar
74.Kwan, W.L., Tseng, R.J., Wu, W., Pei, Q., Yang, Y., IEEE Int. Electron Devices Meeting (2007); doi:10.1109/IEDM.2007.4418911.Google Scholar
75.Kwan, W.L., Tseng, R.J., Yang, Y., Philos. Trans. R. Soc., A 367, 4159 (2009).Google Scholar
76.Kügeler, C., Meier, M., Rosezin, R., Gilles, S., Waser, R., Solid-State Electron. 53, 1287 (2009).Google Scholar
77.Kim, J.J., Cho, B., Kim, K.S., Lee, T., Jung, G.Y., Adv. Mater. 23, 2104 (2011).Google Scholar
78.Li, L., Ling, Q.-D., Lim, S.-L., Tan, Y.-P., Zhu, C., Chan, D.S.H., Kang, E.-T., Neoh, K.-G., Org. Electron. 8, 401 (2007).Google Scholar
79.Kim, S., Choi, Y.-K., Appl. Phys. Lett. 92, 223508 (2008).Google Scholar
80.Lee, S., Kim, H., Yun, D.-J., Rhee, S.-W., Yong, K., Appl. Phys. Lett. 95, 262113 (2009).Google Scholar
81.Jeong, H.Y., Kim, J.Y., Kim, J.W., Hwang, J.O., Kim, J.-E., Lee, J.Y., Yoon, T.H., Cho, B.J., Kim, S.O., Ruoff, R.S., Choi, S.-Y., Nano Lett. 10, 4381 (2010).Google Scholar
82.Ji, Y., Cho, B., Song, S., Kim, T.-W., Choe, M., Kahng, Y.H., Lee, T., Adv. Mater. 22, 3071 (2010).Google Scholar
83.Sekitani, T., Yokota, T., Zschieschang, U., Klauk, H., Bauer, S., Takeuchi, K., Takamiya, M., Sakurai, T., Someya, T., Science 326, 1516 (2009).Google Scholar
84.Ji, Y., Lee, S., Cho, B., Song, S., Lee, T., ACS Nano 5, 5995 (2011).Google Scholar
85.Lian, K., Li, R., Wang, H., Zhang, J., Gamota, D., Mater. Sci. Eng., B 167, 12 (2010).Google Scholar
86.Heeger, A.J., Angew. Chem. Int. Ed. 40, 2591 (2001).Google Scholar
87.MacDiarmid, A.G., Angew. Chem. Int. Ed. 40, 2581 (2001).Google Scholar
88.Waser, R., Aono, M., Nat. Mater. 6, 833 (2007).Google Scholar
89.Ling, Q.D., Lim, S.L., Song, Y., Zhu, C.X., Chan, D.S.H., Kang, E.T., Neoh, K.G., Langmuir 23, 312 (2007).Google Scholar
90.Xie, L.-H., Ling, Q.-D., Hou, X.-Y., Huang, W., J. Am. Chem. Soc. 130, 2120 (2008).Google Scholar