Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-27T11:39:23.548Z Has data issue: false hasContentIssue false

Evidence from the Kyrenia Range, Cyprus, of the northerly active margin of the Southern Neotethys during Late Cretaceous–Early Cenozoic time

Published online by Cambridge University Press:  31 August 2011

ALASTAIR H. F. ROBERTSON*
Affiliation:
School of GeoSciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3JW, UK
KEMAL TASLI
Affiliation:
Department of Geology, Mersin University, Mersin 33343, Turkey
NURDAN İNAN
Affiliation:
Department of Geology, Mersin University, Mersin 33343, Turkey
*
Author for correspondence: Alastair.Robertson@ed.ac.uk

Abstract

Sedimentary geology and planktonic foraminiferal biostratigraphy have shed light on the geological development of the northern, active continental margin of the Southern Neotethys in the Kyrenia Range. Following regional Triassic rifting, a carbonate platform developed during Jurassic–Cretaceous time, followed by its regional burial, deformation and greenschist-facies metamorphism. The platform was exhumed by Late Maastrichtian time and unconformably overlain by locally derived carbonate breccias, passing upwards into Upper Maastrichtian pelagic carbonates. In places, the pelagic carbonates are interbedded with sandstone turbidites derived from mixed continental, basic volcanic, neritic carbonate and pelagic lithologies. In addition, two contrasting volcanogenic sequences are exposed in the western-central Kyrenia Range, separated by a low-angle tectonic contact. The first is a thickening-upward sequence of Campanian–Lower Maastrichtian(?) pelagic carbonates, silicic tuffs, silicic lava debris flows and thick-bedded to massive rhyolitic lava flows. The second sequence comprises two intervals of basaltic extrusive rocks interbedded with pelagic carbonates. The basaltic rocks unconformably overlie the metamorphosed carbonate platform whereas no base to the silicic volcanic rocks is exposed. Additional basaltic lavas are exposed throughout the Kyrenia Range where they are dated as Late Maastrichtian and Late Paleocene–Middle Eocene in age. In our proposed tectonic model, related to northward subduction of the Southern Neotethys, the Kyrenia platform was thrust beneath a larger Tauride microcontinental unit to the north and then was rapidly exhumed prior to Late Maastrichtian time. Pelagic carbonates and sandstone turbidites of mixed, largely continental provenance then accumulated along a deeply submerged continental borderland during Late Maastrichtian time. The silicic and basaltic volcanogenic rocks erupted in adjacent areas and were later tectonically juxtaposed. The Campanian–Early Maastrichtian(?) silicic volcanism reflects continental margin-type arc magmatism. In contrast, the Upper Maastrichtian and Paleocene–Middle Eocene basaltic volcanic rocks erupted in an extensional (or transtensional) setting likely to relate to the anticlockwise rotation of the Troodos microplate.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aktaş, G. & Robertson, A. H. F. 1984. The Maden Complex, S E Turkey: evolution of a Neotethyan continental margin. In The Geological Evolution of the Eastern Mediterranean (eds J. E. Dixon & Robertson, A. H. F.), pp. 375402. Geological Society of London, Special Publication no. 17.Google Scholar
Aktaş, G. & Robertson, A. H. F. 1990. Tectonic evolution of the Tethys suture zone in S.E. Turkey: evidence from the petrology and geochemistry of Late Cretaceous and Middle Eocene extrusives. In Ophiolites – Oceanic Crustal Analogues: Proceedings of the International Symposium ‘Troodos 1987’ (eds Moores, E. M., Panayiotou, A. & Xenophontos, C.), pp. 311–29. Nicosia, Cyprus: Geological Survey Department.Google Scholar
Al-Riyami, K., Robertson, A. H. F., Xenophontos, C. & Dixon, J. E. 2002. Origin and emplacement of the Late Cretaceous Baer-Bassit ophiolite and its metamorphic sole in NW Syria. Lithos 65, 225–60.CrossRefGoogle Scholar
Baroz, F. 1979. Etude géologique dans le Pentadaktylos et la Mesaoria (Chypre Septentrionale). Published Docteur D'Etat Thesis. Université de Nancy France, vols. 1 & 2.Google Scholar
Baroz, F. 1980. Volcanism and continent-island arc collision in the Pentadaktylos range, Cyprus. In Ophiolites: Proceedings of the International Symposium ‘Troodos 1979’ (ed. Panayiotou, A.), pp. 73–5. Nicosia, Cyprus: Geological Survey Department.Google Scholar
Barrier, E. & Vrielynck, B. (eds) 2009. Palaeotectonic Maps of the Middle East. Paris: Middle East Basins Evolution Programme.Google Scholar
Cleintuar, M. R., Knox, G. J. & Ealey, P. J. 1977. The geology of Cyprus and its place in the East-Mediterranean framework. Geologie en Mijnbouw 56, 6682.Google Scholar
Clube, T. M. M., Creer, K. M. & Robertson, A. H. F. 1985. The palaeorotation of the Troodos microplate. Nature 317, 522–5.CrossRefGoogle Scholar
Clube, T. M. M. & Robertson, A. H. F. 1986. The palaeorotation of the Troodos microplate, Cyprus, in the Late Mesozoic-Early Cenozoic plate tectonic framework of the Eastern Mediterranean. Surveys in Geophysics 8, 375437.CrossRefGoogle Scholar
Dercourt, J., Zonenshain, L.-P., Ricou, L. E., Kazmin, V. G., Le Pichon, X., Knipper, A. L., Grandjacquet, C., Sbortshikov, I. M., Geyssant, J., Lepvrier, C., Pechiersky, D. H., Boulin, J., Sibuet, J. C., Savostin, L. A., Sorokhtin, O., Westphal, M., Bazhenov, M. L., Lauer, J. P. & Bijuduval, B. 1986. Geological evolution of the Tethys belt from the Atlantic to the Pamirs since the Lias. Tectonophysics 123, 241315.CrossRefGoogle Scholar
Dercourt, J., Gaetani, M., Vrielynck, B., Barrier, E., Biju-Duval, B., Brunet, M. F., Cadet, J. P., Crasquin, S. & Sandulescu, M. 2000. Peri-Tethys Palaeogeographical Atlas 2000. Paris: Commission de la Carte Géologique du Monde/Commission for the Geologic Map of the World.Google Scholar
Ducloz, C. 1972. The Geology of the Bellapais-Kyrthrea Area of the Central Kyrenia Range. Cyprus Geological Survey Bulletin 6, 75 pp.Google Scholar
Floyd, P. A., Kelling, G., Gökçen, S. L. & Gökçen, N. 1991. Geochemistry and tectonic environment of basaltic rocks from the Misis ophiolitic melange, South Turkey. Chemical Geology 89, 263–79.CrossRefGoogle Scholar
Floyd, P. A., Kelling, G. & Gökçen, S. L. & Gökçen, N. 1992. Arc-related origin of volcaniclastic sequences in the Misis Complex, Southern Turkey. Journal of Geology 100, 221–30.CrossRefGoogle Scholar
Gass, I. G. 1990. Ophiolites and ocean lithosphere. In Ophiolites – Oceanic Crustal Analogues: Proceedings of the International Symposium ‘Troodos 1987’ (eds Malpas, J., Moores, E. M., Panayiotou, A. & Xenophontos, C.), pp. 112. Nicosia, Cyprus: Geological Survey Department.Google Scholar
Hakyemez, A. & Özkan-Altıner, S. 2007. Beşparmak Dağları’ndaki (Kuzey Kıbrıs) Üst Maastrihtiyen-Eosen ıstifinin planktonik foraminifer biyostratigrafisi (Planktonic foraminiferal biostratigraphy of the Upper Maastrichtian–Eocene sequence in the Beşparmak Range, Northern Cyprus). In 60th Geological Congress of Turkey, Ankara, Abstract Book, pp. 416–19.Google Scholar
Hakyemez, Y., Turhan, N., Sönmez, İ. & Sümengen, M. 2000. Kuzey Kıbrıs Türk Cumhuriyeti'nin Jeolojisi (Geology of the Northern Cyprus Turkish Republic). Ankara: Mineral Research and Exploration Institute of Turkey, Report, 44 pp.Google Scholar
Harrison, R. W., Newell, W. L., Batihanli, H., Panayides, I., McGeehin, J. P., Mahan, S. A., Ozhur, A., Tsiolakis, E. & Necdet, M. 2004. Tectonic framework and Late Cenozoic tectonic history of the northern part of Cyprus: implications for earthquake hazards and regional tectonics. Journal of Asian Earth Sciences 23, 191210.CrossRefGoogle Scholar
Henson, F. R. S., Browne, R. V. & McGinty, J. 1949. A synopsis of the stratigraphy and geological history of Cyprus. Quarterly Journal of the Geological Society of London CV, 2–37.Google Scholar
Hodgson, E., Morris, A., Anderson, M. & Robertson, A. 2010. First Palaeomagnetic Results From the Kyrenia Range Terrane of Northern Cyprus. Vienna: European Union of Geosciences. Published abstract.Google Scholar
Huang, K., Malpas, J. & Xenophontos, C. 2007. Geological studies of igneous rocks and their relationships along the Kyrenia Range. In Abstracts of the 6th International Congress of Eastern Mediterranean Geology, 2–5 April, 2007, Amman, Jordan (eds Moumani, K., Shawabkeh, K., Al-Malabeh, A. & Abdelghafoor, M.), p. 53.Google Scholar
Inwood, J., Morris, A., Anderson, M. W. & Robertson, A. H. F. 2009. Neotethyan intraoceanic microplate rotation and variations in spreading axis orientation: palaeomagnetic evidence from the Hatay ophiolite (southern Turkey). Earth and Planetary Science Letters 280, 105–17.CrossRefGoogle Scholar
Karaoğlan, F., Parlak, O., Hejl, E., Neubauer, F., Klötzlı, U., Koller, F. & Kop, A. 2010. The temporal evolution of arc magmatisms beneath the Tauride active continental margin. In Abstract Book, 7th International Symposium on Eastern Mediterranean Geology, 18–22 October, 2010, Adana, Turkey (eds Bozdağ, S., Çan, T. & Karaoğlan, F.), p. 7.Google Scholar
Kelling, G., Gökçen, S. L., Floyd, P. A. & Gökçen, N. 1987. Neogene tectonics and plate convergence in the eastern Mediterranean: new data from southern Turkey. Geology 15, 425–9.2.0.CO;2>CrossRefGoogle Scholar
Kempler, D. 1998. Eratosthenes Seamount: the possible spearhead of incipient continental collision in the Eastern Mediterranean In Proceedings of the Ocean Drilling Program, Scientific Results, vol. 160 (eds Robertson, A. H. F., Emeis, K.-C., Richter, K. C. & Camerlenghi, A.), pp. 709–21. College Station, Texas.Google Scholar
Kempler, D. & Garfunkel, Z. 1994. Structures and kinematics in the northeastern Mediterranean: a study of an irregular plate boundary. Tectonophysics 234, 1932.CrossRefGoogle Scholar
Kozlu, H. 1987. Structural development and stratigraphy of Misis–Andırın region. In Proceedings of the Seventh Turkish Petroleum Congress, Ankara, pp. 104–16 (in Turkish with an English abstract).Google Scholar
Lord, A. R., Panayides, A., Urquhart, E. & Xenophontos, C. 2000. A biostratigraphical framework for the Late Cretaceous–Recent circum-Troodos sedimentary sequence, Cyprus. In Proceedings of the Third International Conference on the Geology of the Eastern Mediterranean (eds Panayides, I., Xenophontos, C. & Malpas, J.), pp. 289–98. Nicosia, Cyprus: Geological Survey Department.Google Scholar
Moore, T. A. 1960. The Geology and Mineral Resources of the Astromeritis-Kormakiti Area. Nicosia, Cyprus: Geological Survey Department, Memoir 6, 96 pp.Google Scholar
Moores, E. M. & Vine, F. J. 1971. The Troodos Massif, Cyprus and other ophiolites as oceanic crust: evaluations and implications. Philosophical Transactions of the Royal Society A268, 433–66.Google Scholar
Morris, A. 1996. A review of palaeomagnetic research in the Troodos ophiolite, Cyprus. In Palaeomagnetism and Tectonics of the Mediterranean Region (eds Morris, A. & Tarling, D.), pp. 311–24. Geological Society of London, Special Publication no. 105.Google Scholar
Morris, A. 2003. The Late Cretaceous palaeolatitude of the Neotethyan spreading axis in the eastern Mediterranean region. Tectonophysics 377, 157–78.CrossRefGoogle Scholar
Morris, A., Anderson, M. W., Inwood, J. & Robertson, A. H. F. 2006. Palaeomagnetic insights into the evolution of Neotethyan oceanic crust in the eastern Mediterranean. In Tectonic Development of the Eastern Mediterranean Region (eds Robertson, A. H. F. & Mountrakis, D.), pp. 351–72. Geological Society of London, Special Publication no. 260.Google Scholar
Morris, A., Creer, K. M. & Robertson, A. H. F. 1990. Palaeomagnetic evidence for clockwise tectonic rotations related to dextral shear along the Southern Troodos Transform Fault, Cyprus. Earth and Planetary Science Letters 99, 250–62.CrossRefGoogle Scholar
Musaka, S. B. & Ludden, J. N. 1987. Uranium-lead ages of plagiogranites from the Troodos ophiolite, Cyprus, and their tectonic significance. Geology 15, 825–8.Google Scholar
Okay, A. I. 1989. An exotic eclogite/blueschist slice in a Barrovian-style metamorphic terrain, Alanya Nappes, southern Turkey. Journal of Petrology 30, 107–32.CrossRefGoogle Scholar
Okay, A. I. & Özgül, N. 1984. HP/LT metamorphism and the structure of the Alanya Massif, Southern Turkey: an allochthonous composite tectonic sheet. In The Geological Evolution of the Eastern Mediterranean (eds Dixon, J. E. & Robertson, A. H. F.), pp 415–29. Geological Society of London, Special Publication no. 17.Google Scholar
Parlak, O. 2006. Geodynamic significance of granitoid magmatism in southeast Anatolia: geochemical and geochronological evidence from the Göksun–Afşin (Kahranmanmaraş, Turkey) region. International Journal of Earth Sciences 95, 609–27.CrossRefGoogle Scholar
Parlak, O., Höck, V., Kozlu, H. & Delaloye, M. 2004. Oceanic crust generation in an island arc tectonic setting, SE Anatolian Orogenic belt (Turkey). Geological Magazine 141, 583603.CrossRefGoogle Scholar
Pearce, J. A. 1975. Basalt geochemistry used to investigate past tectonic environments in Cyprus. Tectonophysics 25, 4167.CrossRefGoogle Scholar
Perinçek, D. & Kozlu, H. 1984. Stratigraphical and structural relations of the units in the Afşin-Elbistan-Doğanşehir region (Eastern Taurus). In Geology of the Taurus Belt: Proceedings of the International Symposium, MTA, Ankara (eds Tekeli, O. & Göncüoğlu, M. C.), pp. 181–98.Google Scholar
Perinçek, D. & Özkaya, I. 1981. Tectonic evolution of the northern margin of the Arabian plate. Yerbilimleri, Bulletin of the Institute of Earth Sciences of Hacettepe University 8, 91101.Google Scholar
Rızaoğlu, T., Parlak, O., Höck, V., Koller, F., Hames, W. E. & Billor, Z. 2009. Andean-type active margin formation in the eastern Taurides: geochemical and geochronological evidence from the Baskil granitoid (Elazığ, SE Turkey). Tectonophysics 473, 188207.CrossRefGoogle Scholar
Robaszynski, F. & Caron, M. 1995. Foraminifères planktoniques du Crétacé: commentaire de la zonation Europe-Méditerranée. Bulletin de la Societé Géologique de France 166 (6), 681–92.Google Scholar
Robertson, A. H. F. 1977. The Kannaviou Formation Cyprus: volcaniclastic sedimentation from a probable Late Cretaceous island arc. Journal of the Geological Society, London 134, 269–92.CrossRefGoogle Scholar
Robertson, A. H. F. 1990. Tectonic evolution of Cyprus. In Ophiolites – Oceanic Crustal Analogues: Proceedings of the International Symposium ‘Troodos 1987’ (eds Moores, E. M., Panayiotou, A. & Xenophontos, C.), pp. 235250. Nicosia, Cyprus: Geological Survey Department.Google Scholar
Robertson, A. H. F. 1993. Mesozoic–Tertiary sedimentary and tectonic evolution of Neotethyan carbonate platforms, margins and small ocean basins in the Antalya Complex, S.W. Turkey. In Tectonic Controls and Signatures in Sedimentary Successions (eds Frostick, L. & Steel, R.), pp. 415–65. Special Publication of the International Association of Sedimentologists, no. 20.Google Scholar
Robertson, A. H. F. 1998. Mesozoic–Cenozoic tectonic evolution of the easternmost Mediterranean area: integration of marine and land evidence. In Proceedings of the Ocean Drilling Program, Scientific Results, vol. 160 (eds Robertson, A. H. F., Emeis, K.-C., Richter, K. C. & Camerlenghi, A.), pp. 723–82. College Station, Texas.CrossRefGoogle Scholar
Robertson, A. H. F. & Dixon, J. E. 1984. Introduction; Aspects of the Geological Evolution of the Eastern Mediterranean. In The Geological Evolution of the Eastern Mediterranean (eds Dixon, J. E. & Robertson, A. H. F.), pp. 174. Geological Society of London, Special Publication no. 17.Google Scholar
Robertson, A. H. F., Parlak, O., Rızaoğlu, T., Unlügenç, U., İnan, N., Taslı, K. & Ustaömer, T. 2007. Tectonic evolution of the South Tethyan ocean: evidence from the Eastern Taurus Mountains (Elazığ region, SE Turkey). In Deformation of the Continental Crust: The Legacy of Mike Coward (eds Ries, A. C., Butler, R. W. H. & Graham, R. H.), pp. 231–70. Geological Society of London, Special Publication no. 272.Google Scholar
Robertson, A. H. F., Unlügenç, Ü. C., İnan, N. & Taslı, K. 2004. The Misis–Andırın Complex: a Mid-Tertiary melange related to late-stage subduction of the Southern Neotethys in S Turkey. Journal of Asian Earth Sciences 22, 413–53.CrossRefGoogle Scholar
Robertson, A. H. F., Ustaömer, T., Parlak, O., Unlügenç, U. C., Taslı, K. & İnan, N. 2006. The Berit transect of the Tauride thrust belt, S Turkey: Late Cretaceous–Early Cenozoic accretionary/collisional processes related to closure of the Southern Neotethys. Journal of Asian Earth Sciences 27, 108–45.CrossRefGoogle Scholar
Robertson, A. H. F. & Woodcock, N. H. 1986. The role of the Kyrenia Range lineament, Cyprus, in the geological evolution of the Eastern Mediterranean area. In Major Crustal Lineaments and their Influence on the Geological History of the Continental Lithosphere (eds Reading, H. G., Watterson, J. & White, S. H.), pp. 141–71. Philosophical Transactions of the Royal Society of London, Series A, 317.Google Scholar
Robertson, A. H. F. & Xenophontos, C. 1993. Development of concepts concerning the Troodos ophiolite and adjacent units in Cyprus. In Magmatic Processes and Plate Tectonics (eds Prichard, H M., Alabaster, T., Harris, N. B. & Neary, C. R.), pp. 85120. Geological Society of London, Special Publication no. 70.Google Scholar
Robinson, P. T. & Malpas, J. 1990. The Troodos Ophiolite of Cyprus: new perspectives on its origin and emplacement. In Ophiolites – Oceanic Crustal Analogues: Proceedings of the International Symposium ‘Troodos 1987’ (eds Moores, E. M., Panayiotou, A. & Xenophontos, C.), pp.1336. Nicosia, Cyprus: Geological Survey Department.Google Scholar
Sartorio, D. & Venturini, S. 1988. Southern Tethys Biofacies. S. Donato, Milanese: Agip S.p.A., 235 pp.Google Scholar
Savostin, L. A., Sibuet, J. C., Zonenshain, L. P., Le Pichon, X. & Rolet, J. 1986. Kinematic evolution of the Tethys belt, from the Atlantic to the Pamirs since the Triassic. Tectonophysics 123, 135.CrossRefGoogle Scholar
Stampfli, G. M. & Borel, G. D. 2002. A plate tectonic model for the Palaeozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrones. Earth and Planetary Science Letters 169, 1733.CrossRefGoogle Scholar
Urquhart, E. & Banner, F. T. 1994. Biostratigraphy of the supra-ophiolite sediments of the Troodos Massif, Cyprus: the Cretaceous Perapedhi, Kannaviou, Moni and Kathikas formations. Geological Magazine 131, 499518.CrossRefGoogle Scholar
Yazgan, E. & Chessex, R. 1991. Geology and tectonic evolution of the Southeastern Taurides in the region of Malatya. Bulletin of the Turkish Association of Petroleum Geologists 3 (1), 142.Google Scholar
Yılmaz, Y. 1993. New evidence and model on the evolution of the southeast Anatolian orogen. Geological Society of America Bulletin 105, 251–71.2.3.CO;2>CrossRefGoogle Scholar
Zitter, T. A. C., Woodside, J. M. & Mascle, J. 2003. The Anaximander Mountains: a clue to the tectonics of southwest Anatolia. Geological Journal 38, 375–94.CrossRefGoogle Scholar
Supplementary material: File

Robertson Supplementary Appendix

Robertson Supplementary Appendix

Download Robertson Supplementary Appendix(File)
File 1.5 MB